Want to create interactive content? It’s easy in Genially!

Get started free

Fundamentos de matemáticas

diegoylamar

Created on February 11, 2024

Actividad1 Diego Ivan Camacho Martinez AL101842

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

Universidad Virtual CNCI

Diego Iván Camacho MartínezAL101842Profesora: María Pedrote Adán

Start

Fundamentos

de matemáticas

¿Qué es? Es la característica de un objeto, posee dimensiones y atributos que son cuantificables por medio del lenguaje matemático.

MAGNITUD

RELACIÓN ENTRE MAGNITUDES

La relación o proporcionalidad entre magnitudes, es la relación entre 2 o mas magnitudes. Por ejemplo:El número de plátanos con el número de cajas necesarias para colocarlos. La velocidad de un caballo galopando con el tiempo que tarda el caballo en llegar de un punto a otro.

RELACIÓN ENTRE MAGNITUDES

Estas relaciones se dividen en dos: directamente proporcionales e inversamente proporcionales.

Por ejemplo, el precio de unos boletos para el estadio. Teniendo en cuenta que un boleto cuesta $150 ¿Cuánto costaran 3?

Fórmula

RELACIÓN ENTRE MAGNITUDES

Directamente proporcional Existe una igualdad entre magnitudes, si una aumenta la otra igual, si una disminuye la también.

Por ejemplo, los días que tardarán 3 pintores en pintar una pared. Suponiendo que 1 solo, tarda 60 días

Fórmula

RELACIÓN ENTRE MAGNITUDES

Inversamente proporcionales Si una magnitud aumenta, la otra disminuye. Si una magnitud disminuye, la otra aumenta.

Reparto directo y Reparto Inverso

REPARTO PROPORCIONAL

De manera sencilla, significa repartir o dividir algo entre las tantas partes que haya. Otorgando a todos un tanto igualitario del todo que existe. Existen dos tipos de reparto:

Por ejemplo, un padre quiere repartir a sus hijos $2000, proporcionalmente a sus edades. Sus hijos tienen 8, 12 y 20 años. Es decir al que tiene más edad le tocará más dinero. ¿Cuánto dinero le corresponderá a cada quién?

REPARTO DIRECTO

Cuando intervienen dos magnitudes que son directamente proporcionales

REPARTO DIRECTO

REPARTO DIRECTO

REPARTO DIRECTO

REPARTO DIRECTO

Por ejemplo, el jefe de una empresa quiere premiar a tres de sus mejores empleados dándoles una gratificación por su alto rendimiento. El problema es que los tres empleados tienen algunas faltas y desea que esa situación se vea reflejada en el reparto. Planea repartir $3900 en partes IP a sus faltas que son 2, 3 y 4 días respectivamente. Lo que quiere decir que entre más faltas tenga un empleado menos dinero le tocará. Entonces, ¿cuánto dinero le toca a cada empleado

REPARTO INVERSO

Intervienen dos magnitudes inversamente proporcionales

REPARTO INVERSO

REPARTO INVERSO

REPARTO INVERSO

REPARTO INVERSO

Es un procedimiento que nos permite conocer un valor incognito cuando poseemos la información de otros 3 valores.

REGLA DE TRES SIMPLE Y COMPUESTA

2kg-$0.80 5-$x

Por ejemplo: Ana compra 5kg de patatas, si 2kg cuestan $0.80, ¿cuánto pagará Ana? R= $2

Regla de tres simple directa: Intervienen dos magnitudes directamente proporcionales

REGLA DE TRES SIMPLE Y COMPUESTA

3 - 6 6 - x

Por ejemplo: En el Gran Hotel del Mar, durante el invierno, hay 3 jardineros. Entre todos, riegan y cuidan todos los jardines del hotel en 6 horas. Si durante el verano hay 3 jardineros más, ¿en cuánto tiempo regarán y cuidarán los jardines del hotel entre todos? R= 6 jardineros tardarán 3 horas

Regla de tres simple inversa: Intervienen dos magnitudes inversamente proporcionales.

REGLA DE TRES SIMPLE Y COMPUESTA

Por ejemplo: Para cercar un terreno, cuatro personas construyen un muro de 120 m2 en 18 días. ¿Cuántos días tardarán 12 personas en construir un muro de 800 m2?

Regla de tres simple compuesta: Intervienen más de dos magnitudes proporcionales. Para el cálculo se debe establecer la relación de proporcionalidad entre la incógnita x y las demás magnitudes.

REGLA DE TRES SIMPLE Y COMPUESTA

Por ejemplo: tenemos en una bolsa cien manzanas, esa cifra total representa el 100 % de las manzanas (o sea, 100 manzanas de cada 100); si regalamos cincuenta manzanas a un amigo (50 de cada 100 manzanas iniciales) nos quedaremos entonces con el 50 % de lo que teníamos, es decir, la mitad; y si de esa mitad resultan estar dañadas 25 manzanas (25 de cada 100 manzanas iniciales), acabaremos únicamente con 25 % de la cifra inicial, es decir, un cuarto del total.

Se define como porcentaje a la cantidad determinada como una fraccion de 100 partes iguales. Tanto por ciento, tanto por cada ciento o cada centena

PORCENTAJES

Home

POR VER

GRACIAS