Want to make creations as awesome as this one?

Transcript

Knowledge check, do now:

LO's

AS

y dπ‘₯

Chapter 13 - Integration

A = lw

b2-4ac

AS

y dπ‘₯

A = lw

b2-4ac

AS

y dπ‘₯

A = lw

b2-4ac

AS

y dπ‘₯

A = lw

b2-4ac

Related

New

Old

LO's

AS

Chapter 13 - Integration

y dπ‘₯

A = lw

b2-4ac

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.1 - Integrating xn

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.1 - Integrating xn

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.1 - Integrating xn

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.1 - Integrating xn

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.2 - Definite integrals

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.2 - Definite integrals

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.3 - Finding functions

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.3 - Finding functions

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.4 - Definite integrals

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.4 - Definite integrals

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.4 - Definite integrals

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.5 - Areas under curves

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.5 - Areas under curves

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.6 - Areas under the x-axis

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.6 - Areas under the x-axis

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.7 - Areas between curves and lines

Rules

AS

y dπ‘₯

A = lw

b2-4ac

13.7 - Areas between curves and lines

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Chapter 13 Learning Objectives

  • Find y given α΅ˆΚΈβ„dx for xn
  • Integrate polynomials.
  • Find f'(x), given f'(x) and a point on the curve.
  • Evaluate a definite integral.
  • Find the area bounded by a curve and the x-axis.
  • Find areas bounded by curves and straight lines.

Chapter 13 Learning Objectives

  • Find y given α΅ˆΚΈβ„dx for xn
  • Integrate polynomials.
  • Find f'(x), given f'(x) and a point on the curve.
  • Evaluate a definite integral.
  • Find the area bounded by a curve and the x-axis.
  • Find areas bounded by curves and straight lines.

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level