Want to create interactive content? It’s easy in Genially!

Reuse this genially

24/25 EHE - Unit conversions & exchange rates

thomas.payne

Created on October 11, 2023

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

Unit conversions & exchange rates

AS

y dπ‘₯

A = lw

b2-4ac

Quizizz - 8Qs13

1. 80 Γ· 5 2. 72 + 32 3. βˆ›1000 4. What is the largest square number under 100? 5. Expand βˆ’3 ( 2π‘₯ + 5 ) 6. Split Β£20 in the ratio 7 : 3 7. Estimate the size of the pencil. 8. Round 3.528 to 1 decimal place.

Challenge

AS

joinmyquiz.com

Pin: 4870 0344

y dπ‘₯

A = lw

b2-4ac

Unit Conversion

AS

y dπ‘₯

A = lw

b2-4ac

8) Convert 5000mm into m 9) Convert 250cm into m 10) Convert 3.5m into mm 11) Convert 600000mg into kg 12) Convert 0.75kg into mg 13) Convert 1200ml into L 14) Convert 0.008L into ml

1) Convert 2m into cm 2) Convert 40km into m 3) Convert 300mm into cm 4) Convert 4kg into g 5) Convert 40g into kg 6) Convert 4L into ml 7) Convert 400ml into L

Practice Conversions

AS

y dπ‘₯

A = lw

b2-4ac

Converting Metric Mass: Worded Questions [MF36.09]

06

Converting Metric Mass (Multi-Step) [MF36.08]

05

Converting Metric Mass (One Step) [MF36.07]

04

Converting Metric Length: Worded Questions [MF36.06]

Then search for the nugget.
Click on this one

02

01

03

Converting Metric Length (Multi-Step) [MF36.05]

Converting Metric Length (One Step) [MF36.04]

Century Tasks

Head to 'my courses'

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

unit Conversions

AS

y dπ‘₯

A = lw

b2-4ac

You can use this graph to change between feet and metres. (a) Change 12 feet to metres. (b) Change 25 metres to feet.

Conversion Graphs

AS

y dπ‘₯

A = lw

b2-4ac

Conversion Graphs - worksheet

AS

y dπ‘₯

A = lw

b2-4ac

Exchange Rates

AS

y dπ‘₯

A = lw

b2-4ac

Exchange Rates

AS

y dπ‘₯

A = lw

b2-4ac

Exchange Rates

AS

y dπ‘₯

A = lw

b2-4ac

Correlation

AS

y dπ‘₯

A = lw

b2-4ac

c) Comment on how suitable the graph is for estimating the number of hot drinks sold when the temperature in more than 17Β°C.You must give a reason for your answer.

b) Estimate the number of hot drinks the cafe will sell when the temperature is 6Β°C.

a) Draw a line of best fit on the scatter graph.

A cafe manager plots a scatter graph showing the temperature at 9am and the number of hot drinks sold during the first hour on each of 10 days.

AS

y dπ‘₯

A = lw

b2-4ac

Correlation

Converting Currency: Mixed Problems [MF37.12]

Then search for the nugget.
Click on this one

02

01

03

Converting Currency 2: Double Conversions [MF37.11]

Converting Currency 1 [MF37.10]

Century Tasks

Head to 'my courses'

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

Exchange rates

AS

y dπ‘₯

A = lw

b2-4ac

AS

y dπ‘₯

A = lw

b2-4ac

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

AS

y dπ‘₯

A = lw

b2-4ac

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

AS

y dπ‘₯

A = lw

b2-4ac

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

AS

y dπ‘₯

A = lw

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Challenge:

The perimeter of a rectangle is 22cm. The area of the same rectangle is 28cmΒ² What are the dimensions of the rectangle?

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac