# A Level Maths - Taster

thomas.payne

Created on July 10, 2023

## More creations to inspire you

### LIBRARIES LIBRARIANS

Presentation

### WORLD WILDLIFE DAY

Presentation

### FOOD AND NUTRITION

Presentation

### IAU@HLPF2019

Presentation

### SPRING IN THE FOREST 2

Presentation

### HUMAN RIGHTS

Presentation

### BLENDED PEDAGOGUE

Presentation

## Transcript

~£12 on Amazon

~£24 on Amazon

~£25 on Amazon

Casio fx-991 CW

### y d𝑥

Casio fx-991 EX

### Logs

Materials:

- Calculator
- Textbooks
- Writing paper
- Pen, pencil, ruler

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

A Level Maths - Taster Event

### f(𝑥+a)

### b2-4ac

### y d𝑥

### Logs

LessonsThere will be 3 through the week: - 1 x 2 hour lesson - 2 x 1.5 hour lessonsPrep (homework) ~ 5hrs per week

- Set after every lesson, details on Google classroom.
- Expected to be submitted by next lesson through Google classroom
- Students will mark own work, drawing my attention to their difficulties.

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

A Level Maths - Taster Event

### dy

### f(𝑥+a)

### b2-4ac

1. Expand and fully simplify (m + 9)(m + 2)2. Expand and fully simplify (2a + 3)(4a + 5)3. Expand and fully simplify (6 + √5)(1 + √5)4. Fully factorise w² - 15w + 545. Solve 2m² -11m + 5 = 06. The graph shows the function y = 2𝑥² + 2𝑥 -7Find solutions to 2𝑥² + 2𝑥 -7 = -37. Solve the simultaneous equations: 2𝑥 + 3y = 8 3𝑥 + 4y = 11

Practice Questions

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

#### http://tiny.cc/ee9uxz

Recommend working through before the start of the course.

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

#### Imagine you are a computer.... put these numbers in order:5, 9, 10, 2, 1, 3, 4, 7, 6, 8

#### P vs NP

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

#### The travelling salesman

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

#### The travelling salesman

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

##### P problems are easily solved by computers, and NP problems are not easily solvable, but if you present a potential solution it’s easy to verify whether it’s correct or not. All P problems are NP problems. That is, if it’s easy for the computer to solve, it’s easy to verify the solution. So the P vs NP problem is just asking if these two problem types are the same, or if they are different, i.e. that there are some problems that are easily verified but not easily solved. It currently appears that P ≠ NP, meaning we have plenty of examples of problems that we can quickly verify potential answers to, but that we can’t solve quickly. If anyone were able to show that P is equal to NP, it would make difficult real-world problems trivial for computers.

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

### y d𝑥

### Logs

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

### dx

### dy

### f(𝑥+a)

### b2-4ac

7. 2𝑥 + 3y = 8 3𝑥 + 4y = 11

6. 2𝑥² + 2𝑥 -7 = -3

1. (m + 9)(m + 2)2. (2a + 3)(4a + 5)3. (6 + √5)(1 + √5)4. w² - 15w + 545. 2m² -11m + 5 = 0