Ricerca geometria
Bandera Tommaso
Created on November 21, 2024
Over 30 million people build interactive content in Genially.
Check out what others have designed:
SLYCE DECK
Personalized
LET’S GO TO LONDON!
Personalized
ENERGY KEY ACHIEVEMENTS
Personalized
HUMAN AND SOCIAL DEVELOPMENT KEY
Personalized
CULTURAL HERITAGE AND ART KEY ACHIEVEMENTS
Personalized
DOWNFALLL OF ARAB RULE IN AL-ANDALUS
Personalized
ABOUT THE EEA GRANTS AND NORWAY
Personalized
Transcript
Ricerca geometria
I poligoni
Il trapezio
Fatto da:Bandera Tommaso
Disegno e definizione
Il trapezio è un quadriltero con 2 lati paralleli
B
Classificazione
Trapezio isolsele
Ha i lati obliqui uguali _ _AD = BC
Trapezio scaleno
Ha i lati obliqui diversi
Trapezio rettangolo
Ha due angoli retti
B
Proprietà
I due angoli adiacenti alla base maggiore sono acuti e congruenti.
α = β
I due angoli adiacenti alla base minore sono ottusi e congruenti.
γ = δ
Le diagonali sono congruenti
-
-
Formula inversa
Formula diretta
A = (B + b) x h ___________ 2
b + B = A x 2 _____ h
h = A x 2 ______ b + B
Rombo
Fatto da:Wei Lingjun
Disegni e Definizione
I rombi sono parallelogrammi che hanno 4 lati uguali
Proprietà
I lati opposti sono congruenti
Gli angoli opposti sono congruenti
Gli angoli adiacenti a un lato sono supplementari
Le diagonali si dividono in due parti uguali
Il rombo è ecuilatero
Proprietà delle diagonali
Le diagonali di un rombo sono perpendicolari
Le diagonali di un rombo sono bisettrici degli angoli
Formula diretta
per l'area
A= d x d' ________ 2
Formula inversa
per l'area
d = 2 x A _______ d'
d' = 2 x A _______ d
Problemi
pg. 42 n. 316
In un rombo le diagonali sono lunghe 0,09 m e 27 cm. Calcola l'area del rombo
pg. 43 n. 319
L'are di un rombo è di 272 cm2 e una diagonale misura 16 cm. Calcola la misura dell'altra diagonale
pg. 43 es. n.330
In un rombo la diagonale misura 28 cm e l'altra 5\3 dell'altra. Calcola l'area
Poligoni Regolari
Fatto da:Giacomazzo Arianna
Disegno e definizioni
I poligoni che sono sia equilateri sia equiangoli si dicono poligoni regolari
Classificazione
-Triangolo regolare:3 lati e 3 angoli-Quadrilatero regolare:4 lati e 4 angoli-Pentagono regolare:5 lati e 5 angoli-Esagono regolare:6 lati e 6 angoli
-Ettagono regolare:7 lati e 7 angoli-ottagono regolare:8 lati e 8 angoli-Ennagono regolare:9 lati e 9 angoli-Decagono regolare:10 lati e 10 angoli-Dodecagono regolare:12 lati e 12 angoli
Proprietà
In un poligono regolare di "n" lati la misura di ogni angolo interno "α" è data da:
α = 180 x (n - 2) _____________ n
Dove "n" è il numero dei lati.
Formula diretta
L'area del poligono regolare è uguale alla metà del prodotto del perimetro per l'apotema.Ricorda che si chiama APOTEMA del poligono regolare, l'altezza comune a tutti i triangoli di cui è composto.
A = p x a ______ 2
Formula inversa
A = 2A ___ a
a = 2A ___ p
Problemi
Pg. 52 n. 458Il perimetro di un esagono regolare misura 60 cm e l'apotema 8,6 cm.Calcola l'area dell'esagono.Pg. 53 n. 462Il perimetro di un quadrato misura 46 cm.Trova l'apotema.Pg. 48 n. 408In un triangolo la base è 5/12 dell'altezza e la loro differenza è di 28 cm.Calcola l'area del triangolo.
Fine
Grazie per averci ascoltato