Presentación Pizarra Magnética
Daniel Velasco
Created on November 20, 2024
Over 30 million people create interactive content in Genially
Check out what others have designed:
UNCOVERING REALITY
Presentation
SPRING HAS SPRUNG!
Presentation
THE OCEAN'S DEPTHS
Presentation
2021 TRENDING COLORS
Presentation
POLITICAL POLARIZATION
Presentation
VACCINES & IMMUNITY
Presentation
LETTERING PRESENTATION
Presentation
Transcript
Elemento Finito
Josselyn Alejandra Feria Velazquez nectar Jesus Santizo Gonzales Luis Gilberto Gutierrez Gomez Oscar Manuel Medina Bartolom Luis Enrique Corzo Escobar
INTRODUCCION
Es una herramienta fundamental en el campo de la ingeniería mecánica, que permite abordar problemas complejos en estructuras y componentes mecánicos. Este método divide una estructura compleja en pequeños elementos interconectados, facilitando el análisis detallado de cada elemento bajo diversas condiciones de carga, temperatura, y otros factores externos.
La barra de hormigón mostrada en la figura tiene una longitud de 2.80 m y una sección transversal rectangular que varía linealmente desde 60 x 80 cm a 30 x 50 cm. a) Hallar el desplazamiento exacto del extremo de la viga al ser sometida a una carga puntual de P= 80 ton. b) Modelar la barra con elementos de sección uniforme con el área igual a la sección transversal de la barra real en e eje z de punto medio. c) Calcular el % de error del resultado anterior
Datos
Base Inicial: bo = 0.30mBase final: bL = 0.60m Altura Inicial: ho = 0.50m Altua final: hL = 0.80m Longitud de la barra: L = 2.80m Carga aplicada: p = 80ton Modulo de ELasticidad: E = 2.2 X 10^6 ton/m^2
- Relación de trapecios para la altura:
1) relación entre el área y la coordenada z - Relación de trapecios para la base:
solucion
Solución exacta:δ = 0.379m
2) de la ley de Hooke
- Como el área de un rectángulo es :A = b x h
1) Área de la sección en el centro de cada elemento:
Solución por elementos finitos (considerando 3 elementos)
2) Rigidez de los elementos:
3) Matriz de rigidez del sistema:
4) Vector de cargas y vector de desplazamientos
5) matriz reducida y cálculo de desplazamientos
Por tanto los desplazamientos de los nodos son:
El desplazamiento calculado por el método de elementos finitos (usando 3 elementos) es un 1.07 % menor que el valor exacto