Want to make interactive content? It’s easy in Genially!

Over 30 million people build interactive content in Genially.

Check out what others have designed:

Transcript

CUBICSkey features & transformations

OUTCOMES

NEXT

19 - 1 : Students will be able to determine the key features of cubic functions including: zeros, y-intercepts, domain and range, and end behavior19 - 2 : Students will be able to graph cubic functions and describe their transformations including: reflections across the x-axis, vertical stretch and compression, horizontal shifts (left and right), and vertical shifts (up and down)

PRACTICE

NOTES

VIDEOS

OUTCOMES

Transformations

Key Features

MENU

Key Features

MENU

Transformations

MENU

845 x ...

NOTES

845 x ...

MENU

NOTES

Advanced

Intermediate

Basic

MENU

Outcome 19-2

Outcome 19-1

Basic

MENU

Graph the cubic function.19-1: Identify the key features19-2: Describe the transformations

PRACTICE

Outcome 19-2

Outcome 19-1

Graph the cubic function.19-1: Identify the key features19-2: Describe the transformations

Intermediate

MENU

PRACTICE

Outcome 19-2

Outcome 19-1

Graph the cubic function.19-1: Identify the key features19-2: Describe the transformations

Advanced

MENU

PRACTICE

1. Reflection: Reflection Across the x-axis2. Stretch / Compression: Vertical Stretch (3)3. Horizontal Shift: Horizontal Shift Left (1)4. Vertical Shift: No Vertical Shift

Zeros: (-4.5, 0)y-intercept: (0, 10)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞

Zeros: (-1, 0)y-intercept: (0, -2.5)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → -∞ As x → -∞, f(x) → ∞

Zeros: (0.5, 0)y-intercept: (0, -10)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞

1. Reflection: No Reflection2. Stretch / Compression: Vertial Compression (1/3)3. Horizontal Shift: Horizontal Shift Left (3)4. Vertical Shift: Vertical Shift Up (1)

Zeros: (0, 0)y-intercept: (0, 0)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞

1. Reflection: Reflection Across the x-axis2. Stretch / Compression: Vertical Stretch (3)3. Horizontal Shift: Horizontal Shift Right (1)4. Vertical Shift: Vertical Shift Down (3)
1. Reflection: No Reflection2. Stretch / Compression: Vertical Stretch (3)3. Horizontal Shift: No Horizontal Shift4. Vertical Shift: Vertical Shift Down (3)
1. Reflection: No Reflection2. Stretch / Compression: No Stretch or Compression3. Horizontal Shift: Horizontal Shift Right (2)4. Vertical Shift: Vertical Shift Up (8)
1. Reflection: No Reflection2. Stretch / Compression: Vertial Stretch (2)3. Horizontal Shift: Horizontal Shift Right (2)4. Vertical Shift: Vertical Shift Up (7)

Zeros: (0, 0)y-intercept: (0, 0)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → -∞ As x → -∞, f(x) → ∞

Zeros: (1, 0)y-intercept: (0, -3)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞