Graphing Cubic Functions
Kevin Helms
Created on November 18, 2024
Over 30 million people build interactive content in Genially.
Check out what others have designed:
QUOTE OF THE WEEK ACTIVITY - 10 WEEKS
Presentation
MASTER'S THESIS ENGLISH
Presentation
SPANISH: PARTES DE LA CASA WITH REVIEW
Presentation
PRIVATE TOUR IN SÃO PAULO
Presentation
SUMMER ZINE 2018
Presentation
RACISM AND HEALTHCARE
Presentation
FACTS IN THE TIME OF COVID-19
Presentation
Transcript
CUBICSkey features & transformations
OUTCOMES
NEXT
19 - 1 : Students will be able to determine the key features of cubic functions including: zeros, y-intercepts, domain and range, and end behavior19 - 2 : Students will be able to graph cubic functions and describe their transformations including: reflections across the x-axis, vertical stretch and compression, horizontal shifts (left and right), and vertical shifts (up and down)
PRACTICE
NOTES
VIDEOS
OUTCOMES
Transformations
Key Features
MENU
Key Features
MENU
Transformations
MENU
845 x ...
NOTES
845 x ...
MENU
NOTES
Advanced
Intermediate
Basic
MENU
Outcome 19-2
Outcome 19-1
Basic
MENU
Graph the cubic function.19-1: Identify the key features19-2: Describe the transformations
PRACTICE
Outcome 19-2
Outcome 19-1
Graph the cubic function.19-1: Identify the key features19-2: Describe the transformations
Intermediate
MENU
PRACTICE
Outcome 19-2
Outcome 19-1
Graph the cubic function.19-1: Identify the key features19-2: Describe the transformations
Advanced
MENU
PRACTICE
1. Reflection: Reflection Across the x-axis2. Stretch / Compression: Vertical Stretch (3)3. Horizontal Shift: Horizontal Shift Left (1)4. Vertical Shift: No Vertical Shift
Zeros: (-4.5, 0)y-intercept: (0, 10)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞
Zeros: (-1, 0)y-intercept: (0, -2.5)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → -∞ As x → -∞, f(x) → ∞
Zeros: (0.5, 0)y-intercept: (0, -10)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞
1. Reflection: No Reflection2. Stretch / Compression: Vertial Compression (1/3)3. Horizontal Shift: Horizontal Shift Left (3)4. Vertical Shift: Vertical Shift Up (1)
Zeros: (0, 0)y-intercept: (0, 0)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞
1. Reflection: Reflection Across the x-axis2. Stretch / Compression: Vertical Stretch (3)3. Horizontal Shift: Horizontal Shift Right (1)4. Vertical Shift: Vertical Shift Down (3)
1. Reflection: No Reflection2. Stretch / Compression: Vertical Stretch (3)3. Horizontal Shift: No Horizontal Shift4. Vertical Shift: Vertical Shift Down (3)
1. Reflection: No Reflection2. Stretch / Compression: No Stretch or Compression3. Horizontal Shift: Horizontal Shift Right (2)4. Vertical Shift: Vertical Shift Up (8)
1. Reflection: No Reflection2. Stretch / Compression: Vertial Stretch (2)3. Horizontal Shift: Horizontal Shift Right (2)4. Vertical Shift: Vertical Shift Up (7)
Zeros: (0, 0)y-intercept: (0, 0)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → -∞ As x → -∞, f(x) → ∞
Zeros: (1, 0)y-intercept: (0, -3)Domain: (-∞, ∞)Range: (-∞, ∞)End Behavior: As x → ∞, f(x) → ∞ As x → -∞, f(x) → -∞