Want to create interactive content? It’s easy in Genially!
Lista pizarra
(IND) Mauricio Salinas Martinez (2314127
Created on September 14, 2024
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Halloween Infographic
View
Halloween List 3D
View
Magic and Sorcery List
View
Journey Map
View
Versus Character
View
Akihabara Connectors Infographic Mobile
View
Mobile mockup infographic
Transcript
Axiomas y Teoremas.
Concepto clásico y como frecuencia relativa.
Probabilidad clásica: Espacio Finito equiparable.
Touch me
Conceptos básicos de fundamentos de probabilidad.
Distribución Marginal Conjunta
Probabilidad condicional e independencia.
Teorema de Bayes.
Concepto clásico y frecuencia relativa
Probabilidad clásica: Es la idea de que si tienes un número de resultados posibles iguales, la probabilidad de que ocurra un evento es el número de veces que ese evento puede suceder dividido por el total de resultados. Por ejemplo, en un dado, la probabilidad de sacar un 4 es 1 entre 6, porque hay seis caras posibles y solo una es 4. 𝑃(𝐴)=Número de resultados favorables Número total de resultados posibles Frecuencia relativa: Esto es lo que ocurre cuando repites un experimento muchas veces. Cuantas más veces lo repites, la proporción de veces que ocurre un evento específico (como sacar un 4) se va acercando a su probabilidad real. Es como contar cuántas veces ha pasado algo en relación con el total de intentos.
Axiomas y Teoremas
Axiomas de probabilidad: Son tres reglas básicas:
- La probabilidad de cualquier evento siempre es mayor o igual a 0.
- La probabilidad de que ocurra algo (en el espacio total de posibilidades) es 1.
- Si dos eventos no pueden suceder al mismo tiempo, la probabilidad de que ocurra uno u otro es la suma de sus probabilidades.
Probabilidad clásica: Espacio Finito Equiparable.
Un espacio finito equiparable es simplemente una situación donde se tiene un número limitado de resultados posibles y todos son igualmente probables. Por ejemplo, lanzar una moneda tiene dos resultados posibles (cara o cruz) y ambos son igualmente probables, así que la probabilidad de cada uno es 1/2 . La probabilidad se calcula como:𝑃(𝐴)=∣𝐴∣ ∣𝑆∣ donde∣𝐴∣es el número de resultados favorables a 𝐴 y ∣𝑆∣es el número total de resultados en el espacio muestral 𝑆.
Probabilidad Condicional e Independiente
Probabilidad condicional: Es la probabilidad de que algo suceda, dado que ya ha ocurrido otra cosa. Por ejemplo, si sabemos que ha llovido, la probabilidad de que el suelo esté mojado aumenta. Esto se expresa como "la probabilidad de A dado B".. Se denota como 𝑃(𝐴∣𝐵) y se define como:𝑃(𝐴∣𝐵)=𝑃(𝐴∩𝐵)𝑃(𝐵), si 𝑃(𝐵)>0 Independencia: Dos eventos son independientes si lo que ocurre en uno no afecta al otro. Por ejemplo, lanzar un dado y lanzar una moneda son eventos independientes, porque el resultado del dado no cambia la probabilidad de obtener cara o cruz en la moneda. Matemáticamente, esto significa que: 𝑃(𝐴∩𝐵)=𝑃(𝐴)⋅𝑃(𝐵). Si los eventos son independientes, la probabilidad condicional cumple que 𝑃(𝐴∣𝐵)=𝑃(𝐴).
Teorema de Bayes
El Teorema de Bayes es una fórmula que nos permite actualizar nuestras creencias sobre algo, basado en nueva información. Por ejemplo, si sabemos que normalmente llueve poco, pero vemos nubes oscuras en el cielo, esto se puede usar como nueva información para ajustar la probabilidad de que vaya a llover hoy. 𝑃(𝐴∣𝐵)= 𝑃(𝐵∣𝐴)𝑃(𝐴) 𝑃(𝐵) Este teorema es útil en situaciones donde queremos actualizar la probabilidad de una hipótesis dada la evidencia observada.
Distribución Marginal Conjunta
En probabilidad y estadística, cuando se trabaja con variables aleatorias conjuntas, la distribución marginal conjunta se refiere a las distribuciones de cada variable por separado, obtenidas al sumar (o integrar) sobre las otras variables. Dado un conjunto de variables aleatorias 𝑋 y 𝑌, la distribución marginal de 𝑋 se obtiene sumando sobre los valores de 𝑌 en la distribución conjunta 𝑃(𝑋,𝑌): 𝑃(𝑋)=∑𝑌𝑃(𝑋,𝑌) Esto proporciona la probabilidad total de cada valor de 𝑋 independientemente de 𝑌.