Want to create interactive content? It’s easy in Genially!

Get started free

Applied 2 - Chapter 7+8

thomas.payne

Created on July 10, 2024

Start designing with a free template

Discover more than 1500 professional designs like these:

Practical Presentation

Smart Presentation

Essential Presentation

Akihabara Presentation

Pastel Color Presentation

Modern Presentation

Relaxing Presentation

Transcript

LO's

Chapter 7 - Applications of forces

y dπ‘₯

b2-4ac

A = lw

Old

New

AS

Related

Knowledge check 1

Ans B

Ans A

7.1 - Static particles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.1 - Static particles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.2 - Modelling with Statics

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.2 - Modelling with Statics

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.3 - Friction and static particles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.3 - Friction and static particles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Static rigid bodies

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Static rigid bodies

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Static rigid bodies

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.5 - Dynamics and inclined planes

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.5 - Dynamics and inclined planes

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.6 - Connected particles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.6 - Connected particles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

LO's

Chapter 8 - Further kinematics

y dπ‘₯

b2-4ac

A = lw

Old

New

AS

Knowledge check 1

Related

Ans B

Ans A

8.1 - Vectors in kinematics

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.1 - Vectors in kinematics

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.1 - Vectors in kinematics

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.2 - Vector methods with projectiles

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.3 - Variable acceleration in one dimension

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.3 - Variable acceleration in one dimension

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.4 - Differentiating vectors

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.5 - Integrating vectors

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.5 - Integrating vectors

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.5 - Integrating vectors

y dπ‘₯

Rules

b2-4ac

A = lw

AS

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

Chapter 7 Learning Objectives

  • Find an unknown force when a system is in equilibrium.
  • Solve statics problems involving weight, tension and pulleys.
  • Understand and solve problems involving limiting equilibrium.
  • Solve problems involving motion on rough or smooth inclined planes.
  • Solve problems involving connected particles that require the resolution of forces.

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

Chapter 8 Learning Objectives

  • Work with vectors for displacement, velocity and acceleration when using the vector equations of motion.
  • Use calculus with harder functions of time involving variable acceleration.
  • Differentiate and integrate vectors with respect to time.

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs