Want to make creations as awesome as this one?

Transcript

LO's

Chapter 1 - Regression, Correlation and Hypothesis Testing

Ans A

Ans B

Related

New

Old

Knowledge check 1

AS

y dπ‘₯

A = lw

b2-4ac

AS

y dπ‘₯

A = lw

b2-4ac

1.1 - Exponential models

AS

y dπ‘₯

A = lw

b2-4ac

1.1 - Exponential models

Rules

AS

y dπ‘₯

A = lw

b2-4ac

1.1 - Exponential models

AS

y dπ‘₯

A = lw

b2-4ac

1.2 - Measuring correlation

Rules

AS

y dπ‘₯

A = lw

b2-4ac

1.2 - Measuring correlation

Rules

AS

Rules

y dπ‘₯

A = lw

b2-4ac

1.3 - Hypothesis testing for zero correlation

Rules

AS

Rules

y dπ‘₯

A = lw

b2-4ac

1.3 - Hypothesis testing for zero correlation

LO's

Chapter 2 - Conditional probability

Ans A

Ans B

Related

New

Old

Knowledge check 1

AS

y dπ‘₯

A = lw

b2-4ac

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.1 - Set notation

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.1 - Set notation

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.2 - Conditional probability

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.2 - Conditional probability

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.3 - Conditional probabilities in Venn diagrams

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.4 - Probability formulae

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.4 - Probability formulae

Rules

AS

y dπ‘₯

A = lw

b2-4ac

2.5 - Tree diagrams

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Chapter 1 Learning Objectives

  • Understand exponential models in bivariate data.
  • Use a change of variable to estimate coefficients in an exponential model.
  • Understand and calculate the product moment correlation coefficient.
  • Carry out a hypothesis test for zero correlation.

Chapter 2 Learning Objectives

  • Understand set notation in probability.
  • Understand conditional probability.
  • Solve conditional probability problems using two-way tables and Venn diagrams.
  • Use probability formulae to solve problems.
  • Solve conditional probability using tree diagrams.

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac

Foundation

Higher

A Level

y dπ‘₯

Logs

dx

dy

f(π‘₯+a)

b2-4ac