Want to create interactive content? It’s easy in Genially!

Get started free

ALEATORIEDAD

Renata Salazar

Created on June 15, 2024

Start designing with a free template

Discover more than 1500 professional designs like these:

Modern Presentation

Terrazzo Presentation

Colorful Presentation

Modular Structure Presentation

Chromatic Presentation

City Presentation

News Presentation

Transcript

ALEATORIEDAD

SIMULACIÓN

¿EN DÓNDE PODEMOS ENCONTRARLO?

Podemos encontrarlos en diferenctes areas laborales y cotidianas, asi como de seguridad, por ejemplo: - Programación de aplicaciones. - Desarrollo de juegos en línea - Ciberseguridad por ejemplo en los token de seguridad en las tarjetas bancarias.

¿QUÉ ES LA ALEATORIEDAD Y PARA QUE SIRVE?

La aleatoriedad es la capacidad de generar valores al azar. Es importante ya que ayuda a explorar diferentes escenarios, evaluar la sensibilidad del sistema a cambios inesperados y proporcionar resultados mas realistas y confiables.

NUMEROS PSEUDOALEATORIOS

Son unos números generados por medio de una función (determinista, no aleatoria) y que aparentan ser aleatorios. Estos números pseudoaleatorios se generan a partir de un valor inicial aplicando iterativamente la función. Se recurre a ellos ya que es mas facil puesto que crear un numero realmente aleatorio es muy dificil hasta para un ser humano, aun mas para una computadora, sin embargo, la funcion es la misma.

KOLMOGÓROV-SMIRNOV

Se utiliza principalmente para comparar la distribución empírica de los datos observados con una distribución teórica continua, como la distribución normal, la uniforme o la exponencial.

CHI CUADRADA

Es una técnica estadística utilizada para determinar si hay una diferencia significativa entre las frecuencias observadas y las frecuencias esperadas en una distribución de frecuencias

MODELOS PARA LA GENERACION DE VARIABLES ALEATORIAS.

TEOREMA CENTRAL DEL LÍMITE

Es una poderosa herramienta de la estadística que nos dice que si tomamos suficientes muestras grandes de cualquier población, la distribución de las medias de estas muestras será aproximadamente normal, facilitando así el análisis y la predicción en muchas aplicaciones prácticas.

Tiene multiples usos en diferentes ámbitos, por ejemplo:

ESTIMACIÓN Y PRUEBAS

PREDICCION Y PRONOSTICO

Permite realizar inferencias de los parámetros de una población y comprobar hipótesis acerca de ellos; por ejemplo, si dos poblaciones tienen medias diferentes se define cuál es su comportamiento.

Usando técnicas de análisis de datos es posible establecer cómo se comportarán los intervalos de datos de una muestra.

SIMULACIÓN

ANALISIS DE MUESTRAS

Permite generar datos aleatorios que sigan una distribución normal, ayudando a crear modelos realistas.

Cuando las distribuciones de las muestras no se conocen, permite realizar inferencias de su distribución independientemente del tamaño de la muestra.

ALGORITMO DE BOX-MULLER

El algoritmo de Box-Muller es un método para generar números aleatorios que siguen una distribución normal (campana de Gauss) a partir de números aleatorios que siguen una distribución uniforme. Para usar esta herramienta en los entornos de simulación es necesario considerar que, para la resolución de este algoritmo, se recurre a funciones trigonométricas como: Logaritmo natural, Seno y Coseno.

Dado el potencial del algoritmo de Box-Muller para la generación de números aleatorios, se considera una herramienta valiosa para los siguientes ámbitos de aplicación.

SIMULACIÓN

MODELADO

Genera números aleatorios que respondan a los datos observados, permitiendo modelar el comportamiento de fenómenos naturales, por ello, resulta útil en la ingeniería y la ciencia.

Permite la generación de datos aleatorios con distribuciones normales para la simulación de sistemas complejos, como redes de comunicación o sistemas financieros.

METODOS GENERALES DE SIMULACIÓN

SIMULACIÓN DE MONTECARLO

La simulación de Montecarlo es una técnica utilizada para entender el impacto de la incertidumbre y el riesgo en modelos y sistemas complejos. La idea principal es utilizar números aleatorios para simular una gran cantidad de escenarios posibles en un problema que tiene incertidumbre.

EJEMPLO DE SIMULACION MONTECARLO

Imagina que quieres estimar la probabilidad de ganar en un juego de dados donde ganas si sacas un número mayor a 4. Simulación: Lanzas un dado muchas veces, por ejemplo, 10,000 veces. Números Aleatorios: Cada lanzamiento se simula con un número aleatorio entre 1 y 6. Cálculo: En cada simulación, cuentas cuántas veces el resultado es 5 o 6. Resultados: Si en 10,000 lanzamientos obtuviste 5 o 6 en 3,333 ocasiones, puedes estimar que la probabilidad de ganar es aproximadamente 33.33%.

APLICACION DE LA SIMULACION MONTECARLOS

CIENCIA

INGENIERÍA

FINANZAS

Evaluar el riesgo y el retorno de inversiones.

Modelar fenómenos naturales que tienen variabilidad.

Predecir fallos en sistemas complejos.

METODOS DE SIMULACIÓN DE VARIABLES ALEATORIAS DISCRETAS

BUSQUEDA INDEXADA

MÉTODO DE ALIAS

TRANSFORMACION INVERSA

La búsqueda indexada es un método utilizado en simulación para generar números aleatorios que siguen una distribución discreta específica. En una distribución discreta, cada posible valor tiene una probabilidad específica asociada. La búsqueda indexada utiliza estas probabilidades acumuladas para seleccionar un valor de manera aleatoria.

La transformación inversa es un método utilizado en simulación para generar números aleatorios que siguen una distribución específica, partiendo de números aleatorios que siguen una distribución uniforme.

El método de alias permite seleccionar rápidamente un valor de una distribución discreta preprocesando los datos de la distribución en dos arreglos: uno de probabilidades ajustadas y otro de alias.