Want to create interactive content? It’s easy in Genially!
Imparo a risolvere i problemi di geometria
Giulia Nolli
Created on April 4, 2024
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Modern Presentation
View
Terrazzo Presentation
View
Colorful Presentation
View
Modular Structure Presentation
View
Chromatic Presentation
View
City Presentation
View
News Presentation
Transcript
Imparo a risolvere i problemi di Geometria
I SEGMENTI
*Ripasso
*Ripasso
Un segmento è una parte di retta compresa tra due punti, detti ESTREMI DEL SEGMENTO.
*Ripasso
Un segmento si indica utilizzando i nomi dei suoi estremi.
Segmento AB
Segmento CD
*Ripasso
Il segmento AB si chiama anche DISTANZA tra i punti A e B perché rappresenta il percorso più breve che li unisce.
*Ripasso
La lunghezza di un segmento AB rispetto a una fissata unità di misura si indica in questo modo:
AB
(con una linea sopra il nome del segmento)
Ad esempio: AB = 5 cm CD = 2 m
*Ripasso
Due segmenti si dicono CONSECUTIVI se hanno un estremo in comune.
Disegnamo vari segmenti consecutivi l'uno all'altro...cosa otteniamo?
*Ripasso
Tre o più segmenti consecutivi formano una linea particolare, detta LINEA SPEZZATA.
*Ripasso
Possiamo avere tanti tipi di linea spezzata.
Ogni segmento viene detto LATO della spezzata. Ogni estremo di un lato viene detto VERTICE.
*Ripasso
Che caratteristica hanno questi segmenti consecutivi?
*Ripasso
Due segmenti si dicono ADIACENTI se sono consecutivi e appartengono alla stessa retta.
*Ripasso
Due segmenti si dicono INCIDENTI se hanno un solo punto in comune che non sia un estremo del segmento.
*Ripasso
Due segmenti si dicono COINCIDENTI se hanno entrambi gli estremi in comune .
*Saper rappresentare
PROVA TU!
1.
2.
3.
4.
*Ripasso
Come posso determinare se due segmenti sono uguali oppure se uno è maggiore o minore dell'altro?
*Ripasso
AB CD
Se gli estremi COINCIDONO a due a due e i segmenti sono quindi sovrapponibili, allora i segmenti si dicono CONGRUENTI.
ATTENZIONE: Non confondere il simbolo di congruente e di coincidente!
*Ripasso
Se uno degli estremi non coincide, allora un segmento è MAGGIORE e l'altro è MINORE.
AB > CD
AB < CD
SOMMA di due segmenti
AB+CD=AD
Devo mettere i segmenti su una stessa retta in modo che siano ADIACENTI.
*Saper calcolare
Esempio
3 cm
5 cm
3 cm + 5 cm
3 cm + 5 cm = 8 cm
AB+CD=AD
*Saper rappresentare
PROVA TU!
DIFFERENZA di due segmenti
DIFFERENZA
Sovrappongo i segmenti con un estremo in comune.
Devo mettere CD su AB in modo che A coincida con C. La differenza DB è il segmento che rimane.
AB-CD= DB
*Saper calcolare
Esempio
5 cm
8 cm
8 cm - 5cm = 3 cm
8 cm - 5 cm = 3 cm
AB-CD=DB
*Saper rappresentare
PROVA TU!
MULTIPLI di un segmento
Il multiplo di un segmento è un segmento moltilplicato per n parti uguali.
CD = 2 n = 2 AB EF = 3 n = 3 AB
*Saper calcolare
Esempio
AB = 2 cm
CD = 2 * 2 = 4 cm EF = 3 * 2 = 6 cm
*Saper rappresentare
PROVA TU!
SOTTOMULTIPLI di un segmento
Il sottomultiplo di un segmento è un segmento diviso in n parti uguali.
EF è contenuto due volte in CD e tre volte in AB
CD = 2/3 AB = 2n EF= 1/2 CD = 1n
*Saper rappresentare
PROVA TU!
*Saper calcolare
Esempio
AB = 9 cm
CD = 2/3 AB= 2/3 * 9 = 6 cmEF = 1/3 AB = 1/3 * 9 = 3 cm
LE INFORMAZIONI IN UN PROBLEMA
Dati numerici: esprimono una grandezza "Il segmento è lungo 10 cm" "La somma di segmenti è 15 cm" "La differenza di segmenti è 5 cm"
Dati di relazione: esprimono una relazione "Un segmento è il doppio dell'altro" "Un segmento è il triplo dell'altro"
COMPRENDERE UN PROBLEMA DI GEOMETRIA
1. Individua le informazioni: dati numerici e dati di relazione2. Individua la richiesta 3. Rappresenta i dati con un disegno 4. Traduci il testo in termini matematici
RISOLVERE UN PROBLEMA DI GEOMETRIA
5. Pianifica la tua strategia 6. Rispondi alla richiesta del problema .................................... 7. Controlla tutto l'esercizio e verifica la soluzione
ESEMPIO - parte 1
1. Individua le informazioni: dati numerici e dati di relazione2. Individua la richiesta 3. Rappresenta i dati con un disegno 4. Traduci il testo in termini matematici
Calcola la misura della somma di due segmenti sapendo che il primo è lungo 15 cm e che il secondo è il doppio del primo.
INCOGNITE DATI
Calcola Sapendo che
ESEMPIO - parte 2
3. Rappresenta i dati con un disegno 4. Traduci il testo in termini matematici
Calcola la misura della somma di due segmenti sapendo che il primo è lungo 15 cm e che il secondo è il doppio del primo.
ESEMPIO - parte 3
5. Pianifica la tua strategia 6. Rispondi alla richiesta del problema 7. Controlla tutto l'esercizio e verifica la soluzione
Strategia
- Calcolo CD a partire da AB
moltiplico AB per 2
CD = 2 AB= 2 * 15 cm = 30 cm
- Calcolo la misura della somma di AB e CD
AB + CD = 15 cm + 30 cm = 45 cm
Imparo a risolvere i problemi di Geometria
ATTIVITA' DI GRUPPO