Want to create interactive content? It’s easy in Genially!

Reuse this genially

24/25 EHE - Shapes Recap

thomas.payne

Created on February 21, 2024

Start designing with a free template

Discover more than 1500 professional designs like these:

Modern Presentation

Terrazzo Presentation

Colorful Presentation

Modular Structure Presentation

Chromatic Presentation

City Presentation

News Presentation

Transcript

Shapes recap

y d𝑥

b2-4ac

A = lw

AS

Quizizz - 8Qs42

Pin: 3896 1560

Challenge

joinmyquiz.com

1. 104 ÷ 162. 142 3. 9 × 16 4. Write a translation of 4 right and 2 down as a column vector. 5. What is the name of a 5-sided shape? 6. Expand ( 𝑥 + 5 )( 𝑥 + 3 ) 7. Calculate 4/3 of 36 8. Evaluate 11/2 + 41/2

y d𝑥

b2-4ac

A = lw

AS

Area + Perimeter

y d𝑥

b2-4ac

A = lw

AS

Circles - Area

y d𝑥

b2-4ac

A = lw

AS

Circles - labelling

y d𝑥

b2-4ac

A = lw

AS

Properties of 2d shapes

y d𝑥

b2-4ac

A = lw

AS

Properties of 3d shapes

y d𝑥

b2-4ac

A = lw

AS

Volume

y d𝑥

b2-4ac

A = lw

AS

Surface area

y d𝑥

3.9cm

b2-4ac

A = lw

AS

5cm

Pythagoras

y d𝑥

b2-4ac

A = lw

AS

Shapes

y d𝑥

b2-4ac

A = lw

AS

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

Past paper questions

y d𝑥

b2-4ac

A = lw

AS

y d𝑥

b2-4ac

A = lw

AS

y d𝑥

b2-4ac

A = lw

AS

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

y d𝑥

b2-4ac

A = lw

AS

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

y d𝑥

b2-4ac

A = lw

AS

https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing

3.9cm

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

5cm

A Level

Higher

Foundation

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

b2-4ac

dy

dx

f(𝑥+a)

y d𝑥

Logs

A Level

Higher

Foundation