Want to create interactive content? It’s easy in Genially!

Get started free

Pure 1 - Chapter 13+14

thomas.payne

Created on January 24, 2024

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

LO's

Chapter 13 - Integration

Knowledge check 1

y dπ‘₯

b2-4ac

Ans A

A = lw

Ans B

Old

Ans C

New

AS

Related

13.1 - Integrating xn

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.1 - Integrating xn

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.1 - Integrating xn

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.1 - Integrating xn

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.2 - Definite integrals

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.2 - Definite integrals

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.3 - Finding functions

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.3 - Finding functions

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.4 - Definite integrals

y dπ‘₯

b2-4ac

Rules

A = lw

AS

13.4 - Definite integrals

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.4 - Definite integrals

Rules

y dπ‘₯

b2-4ac

A = lw

AS

13.5 - Areas under curves

y dπ‘₯

b2-4ac

A = lw

AS

Rules

13.5 - Areas under curves

y dπ‘₯

Rules

b2-4ac

A = lw

AS

13.6 - Areas under the x-axis

y dπ‘₯

Rules

b2-4ac

A = lw

AS

13.6 - Areas under the x-axis

y dπ‘₯

Rules

b2-4ac

A = lw

AS

13.7 - Areas between curves and lines

y dπ‘₯

Rules

b2-4ac

A = lw

AS

13.7 - Areas between curves and lines

y dπ‘₯

Rules

b2-4ac

A = lw

AS

LO's

Chapter 14 - Exponentials and logarithms

Knowledge check 1

y dπ‘₯

b2-4ac

A = lw

Old

New

AS

Related

14.1 - Exponential functions

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.1 - Exponential functions

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.2 - ex

y dπ‘₯

b2-4ac

A = lw

AS

Rules

14.2 - ex

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.2 - ex

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.3 - Exponential modelling

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.4 - Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.4 - Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.4 - Logarithms

Rules

y dπ‘₯

b2-4ac

Rules

A = lw

AS

14.5 - Laws of Logarithms

y dπ‘₯

b2-4ac

A = lw

Rules

AS

14.5 - Laws of Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.5 - Laws of Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.5 - Laws of Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.5 - Laws of Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.6 - Solving equations using Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.6 - Solving equations using Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.6 - Solving equations using Logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.7 - Working with natural logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.7 - Working with natural logarithms

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.8 - logarithms and non-linear data

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.8 - logarithms and non-linear data

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.8 - logarithms and non-linear data

Rules

y dπ‘₯

b2-4ac

A = lw

AS

14.8 - logarithms and non-linear data

Rules

y dπ‘₯

b2-4ac

A = lw

AS

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

Chapter 13 Learning Objectives

  • Find y given α΅ˆΚΈβ„dx for xn
  • Integrate polynomials.
  • Find f'(x), given f'(x) and a point on the curve.
  • Evaluate a definite integral.
  • Find the area bounded by a curve and the x-axis.
  • Find areas bounded by curves and straight lines.

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

Chapter 13 Learning Objectives

  • Sketch graphs of the form y = ax, y = ex, and transformations of these graphs.
  • Differentiate ekx and understand why this result is important.
  • Use and interpret models that use exponential functions.
  • Recognise the relationship between exponents and logarithms.
  • Recall and apply the laws of logarithms
  • Solve equations of the form ax=b
  • Describe and use the natural logarithm function.
  • Use logarithms to estimate the values of constants in non-linear models.

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation