Vectors
y d𝑥
b2-4ac
A = lw
AS
Quizizz - 8Qs32
Pin: 2640 1968
Challenge
joinmyquiz.com
1. Solve 2𝑥 + 1 = 262. Simplify fully 3 : 12 : 21 3. Write 0.08 as a percentage. 4. Convert 1.3L into ml 5. Evaluate 4g5p3 ÷ 2g2p 6. Order, smallest to biggest: 0.12 15% 0.012 10% 7. Write the formula for the area of a trapezium. 8. Is 2𝑥 + 1 = 26 an expression/identity/equation/formula
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
Describe these as column vectors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
Vectors
y d𝑥
Century Tasks
b2-4ac
01
Column Vectors [MF41.01]
A = lw
Column Vectors: Scalar Multiplication [MF41.02]
02
Head to 'my courses'
Click on this one
Then search for the nugget.
Column Vectors: Addition and Subtraction [MF41.03]
03
Geometric Vectors 1: One Term [MF41.05]
AS
04
Geometric Vectors 2: Two Terms [MF41.06]
05
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
Past paper questions
y d𝑥
b2-4ac
A = lw
AS
Past paper questions
y d𝑥
b2-4ac
A = lw
AS
Past paper questions
y d𝑥
b2-4ac
A = lw
AS
y d𝑥
b2-4ac
A = lw
AS
y d𝑥
b2-4ac
A = lw
AS
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
y d𝑥
b2-4ac
A = lw
AS
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
y d𝑥
b2-4ac
A = lw
AS
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
Work out 13 ÷ 0.3²
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
24/25 EHE - Vectors
thomas.payne
Created on January 17, 2024
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Visual Presentation
View
Terrazzo Presentation
View
Colorful Presentation
View
Modular Structure Presentation
View
Chromatic Presentation
View
City Presentation
View
News Presentation
Explore all templates
Transcript
Vectors
y d𝑥
b2-4ac
A = lw
AS
Quizizz - 8Qs32
Pin: 2640 1968
Challenge
joinmyquiz.com
1. Solve 2𝑥 + 1 = 262. Simplify fully 3 : 12 : 21 3. Write 0.08 as a percentage. 4. Convert 1.3L into ml 5. Evaluate 4g5p3 ÷ 2g2p 6. Order, smallest to biggest: 0.12 15% 0.012 10% 7. Write the formula for the area of a trapezium. 8. Is 2𝑥 + 1 = 26 an expression/identity/equation/formula
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
Describe these as column vectors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
VEctors
y d𝑥
b2-4ac
A = lw
AS
Vectors
y d𝑥
Century Tasks
b2-4ac
01
Column Vectors [MF41.01]
A = lw
Column Vectors: Scalar Multiplication [MF41.02]
02
Head to 'my courses'
Click on this one
Then search for the nugget.
Column Vectors: Addition and Subtraction [MF41.03]
03
Geometric Vectors 1: One Term [MF41.05]
AS
04
Geometric Vectors 2: Two Terms [MF41.06]
05
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
Past paper questions
y d𝑥
b2-4ac
A = lw
AS
Past paper questions
y d𝑥
b2-4ac
A = lw
AS
Past paper questions
y d𝑥
b2-4ac
A = lw
AS
y d𝑥
b2-4ac
A = lw
AS
y d𝑥
b2-4ac
A = lw
AS
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
y d𝑥
b2-4ac
A = lw
AS
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
y d𝑥
b2-4ac
A = lw
AS
https://drive.google.com/file/d/1cw-5LkBKjywGEAnNUU7bDLDsUHd4x1ia/view?usp=sharing
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
A Level
Higher
Foundation
Work out 13 ÷ 0.3²
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs
A Level
Higher
Foundation
b2-4ac
dy
dx
f(𝑥+a)
y d𝑥
Logs