Want to create interactive content? It’s easy in Genially!

Get started free

Toma de decisiones: incertidumbre

Cervando Aparicio Es

Created on December 15, 2023

Start designing with a free template

Discover more than 1500 professional designs like these:

Interactive Onboarding Guide

Corporate Christmas Presentation

Business Results Presentation

Meeting Plan Presentation

Customer Service Manual

Business vision deck

Economic Presentation

Transcript

TOMA de decisiones bajo incertidumbre

Start

Presentación

Índice

01

Criterio de Wald

02

Criterio de Hurwuicz

03

Criterio de Laplace

04

Criterio de I. J Savage.

05

Valor Esperado de la Información Perfecta y Análisis Pre y Posteriori

Introducción

00

En los procesos de decisión bajo incertidumbre, el decisor podría conocer cuáles son los posibles estados de la naturaleza, aunque no dispone de información alguna sobre cuál de ellos ocurrirá. No sólo es incapaz de predecir el estado real que se presentará, sino que además no puede cuantificar de ninguna forma esta incertidumbre. En particular, esto excluye el conocimiento de información de tipo probabilístico sobre las posibilidades de ocurrencia de cada estado. En estos casos, el o los decisores, pueden aplicar reglas de decisión para tratar en el ambiente de incertidumbre. A continuación mencio-namos las reglas de decisión más usuales.

Criterio de Wald

01

Es un criterio conservador pues está basado en lograr lo mejor de las peores condiciones posibles. Para una matriz de ganancias la re-gla tomará el nombre MINIMAX dado que su-pondrá que la elección de la alternativa será la mejor considerando previamente que ocu-rrirá el peor evento; o MAXIMIN si se trata de una matriz de pérdidas, en la cual la elección del curso de acción implicará que acontecida la peor situación se seleccionará el mejor resultado de las posibilidades alternas.

+ info

Abraham Wald

Criterio de Hurwuicz

02

Representa un intervalo de actitudes desde la más optimista a la más pesimista. En las con-diciones optimistas se elige la acción que pro-porcione el máx ai máx ej {x(ai,ej)}, suponien-do que se trata de beneficios o de ganancias. Así mismo, en condiciones más pesimistas, la acción elegida corresponde a máx ai mín ej { x(ai,ej)}. El criterio es afectado por la personalidad del decisor, parte de tomar un coeficiente de op-timismo a que puede variar entre 0 y 1, cuan-to mayor el valor de a, mayor optimismo; y a menor valor de a, mayor pesimismo.

Maximizando: Max [ a * Max (Xij) + (1 - a) * Min (Xij)] Minimizando: Min [ a * Min (Xij) + (1 - a) * Max (Xij)]

Leonid Hurwicz

Criterio de Laplace

03

Está basado en el principio de razón insufi-ciente: como apriori no existe ninguna razón para suponer que un estado se puede pre-sentar antes que los demás, podemos consi- derar que todos los estados tienen la misma probabilidad de ocurrencia, o sea, la ausencia de conocimiento sobre el estado de la natura-leza equivale a afirmar que todos los estados son equiprobables. En otras palabras se busca sacar el promedio de todos los posibles resultados para cada alternativa.

+ info

Pierre Simon Laplace

Criterio de L. J Savage

04

Usualmente cuando un decisor se inclina por una opción y no se siente del todo seguro, le llega un sentimiento de intranquilidad por no haber elegido alguna de las otras opciones, el criterio busca minimizar el arrepentimiento y propone armar una nueva tabla de decisión, denominada arrepentimiento o de pérdidas, de donde se elegirá la opción que menores pérdidas le pueda traer al decisor de entre las máximas que podrían ocurrir (MiniMax).

+ info

Leonard Jimmie Savage

Ejemplos TDD Criterios bajo Incertidumbre

Una corporativo quiere realizar una campaña publicitaria. Se le presentan 3 posibilidades: Radio (15 minutos de lunes a jueves en un espacio), TV (1 spot cada semana sobre las 12h) y Prensa (1 anuncio 2 días a la semana los lunes y los jueves). Como han hecho campañas anteriormente se han podido valorar los be-neficios de las diferentes posibilidades del siguiente modo:

Criterio de L. J Savage

Criterio de Hurwuicz

Criterio de Wald

Criterio de Laplace

Valor Esperado y Análisis Pre y Posteriori

05

El valor esperado de la información perfecta (VECIP) es el rendimiento es-perado o promedio, a largo plazo, si es que se tiene información perfecta antes de que se deba de tomar la decisión. El Teorema de Bayes es el puente para pasar de una probabilidad a priori o inicial, Pr(H), de una hipótesis H a una probabilidad a posteriori o actua-lizada, Pr(H|D), basado en una nueva observación D. Produce una probabilidad conformada a partir de dos componentes: una que ocasionalmente se delimita subjetivamente, conocida como “probabi-lidad a priori”, y otra objetiva, la llamada verosimilitud, basada exclusiva-mente en los datos. Por la combinación de ambas, el decisor conforma un juicio de probabilidad que sintetiza su nuevo grado de convicción al res-pecto. Esta probabilidad a priori, una vez incorporada la evidencia que aportan los datos, se transforma así en una probabilidad a posteriori.

+ Ejemplos

“Incluso una decisión correcta es incorrecta cuando se toma demasiado tarde.”

Lee Iacocca

¡Gracias!