Want to create interactive content? It’s easy in Genially!

Get started free

Pure 1 - Chapter 7+8

thomas.payne

Created on November 8, 2023

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

LO's

Chapter 7 - Algebraic methods

y dπ‘₯

Knowledge check 1

b2-4ac

Ans A

A = lw

Ans B

Old

Ans C

New

AS

Related

7.1 - ALgebraic fractions

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.2 - Dividing polynomials

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.2 - Dividing polynomials

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.2 - Dividing polynomials

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.3 - The factor theorem

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.3 - The factor theorem

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.3 - The factor theorem

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Mathematical proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Mathematical proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Mathematical proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.4 - Mathematical proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.5 - methods of proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.5 - methods of proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

7.5 - methods of proof

y dπ‘₯

Rules

b2-4ac

A = lw

AS

LO's

Chapter 8 - The binomial expansion

y dπ‘₯

Knowledge check 1

b2-4ac

Ans A

A = lw

Ans B

Old

Ans C

New

AS

Related

8.1 - Pascal's triangle

y dπ‘₯

b2-4ac

A = lw

AS

8.1 - Pascal's triangle

y dπ‘₯

b2-4ac

A = lw

AS

8.1 - Pascal's triangle

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.1 - Pascal's triangle

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.2 - Factorial notation

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.2 - Factorial notation

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.3 - The binomial expansion

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.3 - The binomial expansion

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.3 - The binomial expansion

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.4 - Solving binomial problems

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.4 - Solving binomial problems

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.4 - Solving binomial problems

y dπ‘₯

Rules

b2-4ac

A = lw

AS

8.5 - binomial estimation

y dπ‘₯

Rules

b2-4ac

A = lw

AS

Who to believe?

A quick google on 'real life uses of the binomial theorem' will throw up a suggestion that it is used in the automatic generation of IP addresses. This sounds mildly interesting so I tried to find out more... but couldn't. I found out a bit about IP addresses, but nothing that related to the binomial theorem. I then thought to try chat gpt. It said "The statement that the binomial theorem is used for the automatic generation of IP addresses appears to be incorrect or misleading.... As of my last knowledge update in September 2021 there is no known connection between the binomial theorem and the automatic generation of IP addresses.

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

Chapter 7 Learning Objectives

  • Cancel factors in algebraic fractions
  • Divide a polynomial by a linear expression
  • Use the factor theorem to factorise a cubic expression
  • Construct mathematical proofs using algebra
  • Use proof by exhaustion and disproof by counter-example.

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

Chapter 7 Learning Objectives

  • Cancel factors in algebraic fractions
  • Divide a polynomial by a linear expression
  • Use the factor theorem to factorise a cubic expression
  • Construct mathematical proofs using algebra
  • Use proof by exhaustion and disproof by counter-example.

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

b2-4ac

dy

dx

f(π‘₯+a)

y dπ‘₯

Logs

A Level

Higher

Foundation

A Level

Higher

Foundation

A Level

Higher

Foundation