Want to create interactive content? It’s easy in Genially!
Procesos de Manofactura
SAMUEL ISAY GUERRERO
Created on August 5, 2023
Tarea
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Modern Presentation
View
Terrazzo Presentation
View
Colorful Presentation
View
Modular Structure Presentation
View
Chromatic Presentation
View
City Presentation
View
News Presentation
Transcript
Procesos de Manufactura Moderna Capitulo: II METALES
29497Jose Rene Sevailla
samuel isay guerrero serna
En este capitulo hablaremos un poco de los siguientes temas METALES CONTENIDO DEL CAPÍTULO 6.1 Aleaciones y diagramas de fase 6.1.1 Aleaciones 6.1.2 Diagramas de fase 6.2 Metales ferrosos 6.2.1 El diagrama de fase hierro-carbono 6.2.2 Producción de hierro y acero 6.2.3 Aceros 6.2.4 Hierros colados 6.3 Metales no ferrosos 6.3.1 El aluminio y sus aleaciones 6.3.2 El magnesio y sus aleaciones 6.3.3 El cobre y sus aleaciones 6.3.4 El níquel y sus aleaciones 6.3.5 El titanio y sus aleaciones 6.3.6 El zinc y sus aleaciones 6.3.7 El plomo y el estaño 6.3.8 Metales refractarios 6.3.9 Metales preciosos 6.4 Superlaciones 6.5 Guía para el procesamiento de metales
6.1 Aleaciones y diagramas de fase Estas son algunas de las propiedades de los metales: 1.-Rigidez y resistencia elevadas. Los metales pueden alearse para darles rigidez, resistencia y dureza elevadas; se les utiliza para que proporcionen el marco estructural para 2.- La mayor parte de productos de la ingeniería. Tenacidad. Los metales tienen la capacidad de absorber energía mejor que otras clases de materiales. 3.- Conductividad eléctrica buena. Los metales son conductores debido a su enlace metálico, que permite el movimiento libre de los electrones como transportadores de carga. 4.- Conductividad térmica buena. Los enlaces metálicos también explican el porqué los metales generalmente conducen el calor mejor que los cerámicos y los polímeros.
Aleaciones Una aleación es un metal compuesto de dos o más elementos, al menos uno de los cuales es metálico. Las dos categorías principales de aleaciones son 1) soluciones sólidas, y 2) fases intermedias. Soluciones sólidas Una solución sólida es una aleación en la que un elemento se disuelve en otro para formar una estructura de fase única. El término fase describe una masa homogénea de material, como la de un metal en el que todos los granos tienen la misma estructura reticular cristalina. En una solución sólida, el solvente o elemento base es me- tálico, y el elemento disuelto puede ser metálico o no metálico.
METALES FERROSOS Los metales ferrosos se basan en el hierro, uno de los metales más antiguamente conocidos por el hombre. Los metales ferrosos de importancia en la ingeniería son aleaciones de hierro y carbono. Se dividen en dos grupos principales: acero y hierro fundido. Juntos constituyen aproximadamente el 85% de las toneladas de metal en Estados Unidos [5]. Se comenzará el estudio de los metales ferrosos con el examen del diagrama de fase hierro-carbono
Aceros al carbono Estos aceros contienen carbono como elemento principal de la aleación, y sólo pequeñas cantidades de otros elementos (lo normal es alrededor de 0.5% de manganeso). La resistencia de los aceros simples al carbono se incrementa con el contenido de éste; 1. Aceros al bajo carbono. Contienen menos del 0.20% de C y son por mucho los más utilizados. Las aplicaciones normales son en las piezas automotrices de lámina, placa de acero para la fabricación y vías férreas. Es relativamente fácil dar forma a estos aceros, lo cual los hace de uso muy difundido en aplicaciones que no requieren una resistencia elevada. Por lo general, también los aceros fundidos caen en este rango de carbono. 2. Aceros al medio carbono. Su contenido de carbono varía entre 0.20% y 0.50%, y se especifican para aplicaciones que requieren una resistencia mayor que las de los aceros al bajo carbono. Las aplicaciones incluyen componentes de maquinaria y piezas de motores tales como cigüeñales y rodillos de transmisión. 3. Aceros al alto carbono. Contienen carbono en cantidades superiores a 0.50% y se especifican para aplicaciones que necesitan resistencias aún mayores y también rigidez y dureza. Algunos ejemplos son resortes, herramientas y hojas de corte y piezas resistentes al desgaste.
Aceros de baja aleación Son aleaciones de hierro−carbono que contienen elementos adicionales en cantidades que totalizan menos de 5% del peso. Debido a estas adiciones, los aceros de baja aleación tienen propiedades mecánicas superiores a las de los simples al carbono para aplicaciones dadas. Las propiedades superiores por lo general significan más resistencia, dureza, dureza en caliente, resistencia al desgaste, tenacidad y combinaciones más deseables de éstas. Es frecuente que se requiera tratamiento térmico para lograr pro- piedades mejoradas. ➣ El cromo (Cr) mejora la resistencia, dureza, resistencia al desgaste y dureza en caliente. Es uno de los ingredientes de aleación más eficaces para incrementar la templabilidad (véase la sección 27.2.3). En proporciones significativas, el Cr mejora la resistencia a la corrosión. ➣ El manganeso (Mn) mejora la resistencia y dureza del acero. Cuando éste se encuentra caliente, la templabilidad mejora con el aumento de manganeso. Debido a estos bene- ficios, el manganeso es un ingrediente que se usa mucho en las aleaciones de acero. ➣ El molibdeno (Mo) incrementa la tenacidad y dureza en caliente. También mejora la templabilidad y forma carburos que dan resistencia al desgaste. ➣ El níquel (Ni) mejora la resistencia y la tenacidad. Incrementa la dureza pero no tanto como los otros elementos de las aleaciones del acero. En cantidades significativas me- jora la resistencia a la corrosión y es el otro ingrediente principal (además del cromo) de ciertos tipos de acero inoxidable.
Los aceros inoxidables Se dividen por tradición en tres grupos que reciben su nombre por la fase predominante presente en la aleación a temperatura ambiente: 1. Inoxidables ausenticos. Su composición normal es de alrededor de 18% de Cr y 8% de Ni, y son los más resistentes a la corrosión de los tres grupos. Debido a esa composición, a veces se les identifica como inoxidables 18-8. No son magnéticos y son muy dúctiles, pero muestran un endurecimiento por trabajo significativo. El níquel tiene el efecto de agrandar la región autentica en el diagrama de fase de hierro-carbono, lo que los hace estables a temperatura ambiente. Los aceros inoxidables ausenticos se emplean para fabricar equipo de procesamiento químico y de alimentos, así como piezas de maquinaria que requieren alta resistencia a la corrosión. 2. Inoxidables ferríticos. Contienen de 15% a 20% de cromo, poco carbono y nada de níquel. Esto produce una fase de ferrita a temperatura ambiente. Los aceros inoxidables ferríticos on magnéticos y menos dúctiles y resistentes a la corrosión que los ausenticos. Las piezas fabricadas con ellos van desde utensilios de cocina hasta componentes de motores a reacción. 3. Inoxidables martensíticos. Tienen un contenido de carbono más elevado que los ferríticos, lo que permite que se les dé resistencia por medio de tratamiento térmico (véase la sección 27.2). Tienen hasta 18% de Cr pero nada de Ni. Son fuertes, duros y resistentes a la fatiga, pero por lo general no tan resistentes a la corrosión como los de los otros dos grupos. Los productos más comunes incluyen instrumentos de corte y quirúrgicos. La mayor parte de aceros inoxidables reciben su nombre con un esquema de numeración de la AISI, de tres dígitos. El primero indica el tipo general y los últimos dos dan el grado específico dentro del tipo. La tabla 6.4 enlista los aceros inoxidables más comunes con sus composiciones normales y propiedades mecánicas.
4. Aceros inoxidables de precipitación. Tienen una composición química típica de 17% de Cr y 7% de Ni, con cantidades pequeñas adicionales de elementos de aleación tales como aluminio, cobre, titanio y molibdeno. La característica que los distingue del resto de los inoxidables es que pueden fortalecerse por medio de endurecimiento por precipitación (véase la sección 27.3). A temperaturas elevadas mantienen su fuerza y resistencia a la corrosión, lo que hace que estas aleaciones sean apropiadas para aplicaciones aeroespaciales. 5. Inoxidables dúplex. Poseen una estructura que es una mezcla de ausentita y ferrita en cantidades aproximadamente iguales. Su resistencia a la corrosión es similar a los grados ausenticos y muestran resistencia mejorada al agrietamiento por esfuerzo-corrosión. Las aplicaciones incluyen intercambiadores de calor, bombas y plantas de tratamiento de aguas residuales.
METALES NO FERROSOS Los metales no ferrosos incluyen elementos y aleaciones metálicas que no se basan en el hierro. Los metales más importantes de la ingeniería en el grupo de los no ferrosos son el aluminio, el cobre, el magnesio, el níquel, el titanio y el zinc, así como sus aleaciones. Aunque los metales no ferrosos como grupo no igualan la resistencia de los aceros, ciertas aleaciones no ferrosas tienen resistencia a la corrosión o relaciones resistencia/peso que las hacen competitivas ante los aceros para aplicaciones con esfuerzos moderados a altos. El aluminio y el magnesio Son metales ligeros y por esta característica es frecuente que se les especifique en aplicaciones de ingeniería. Ambos elementos abundan en nuestro planeta, el aluminio en la tierra y el magnesio en el mar, aunque ninguno se extrae con facilidad de su estado natural.
El cobre y sus aleaciones. Producción de cobre En los tiempos antiguos, el cobre existía en la naturaleza como elemento libre. Hoy día, esos depósitos naturales son más difíciles de encontrar y el metal se extrae de minerales que en su mayoría son sulfuros, como la calcopirita (CuFeS2). El níquel y sus aleaciones En muchos aspectos, el níquel (Ni) es similar al hierro. Es magnético y su módulo de elasticidad es virtualmente el mismo que el del hierro y el acero. Sin embargo, es mucho más resistente a la corrosión y las propiedades de alta temperatura de sus aleaciones por lo general son superiores. Debido a sus características de resistencia a la corrosión, se usa mucho como elemento de aleación en el acero, como en los aceros inoxidables, y como metal de recubrimiento de otros metales, como el acero al carbono. El zinc y sus aleaciones Las aleaciones del zinc se utilizan mucho en fundición a troquel para producir componentes en masa para las industrias automotriz y de aparatos. Otra aplicación mayor del zinc se tiene en el acero galvanizado. Como el nombre lo sugiere, se crea una celda galvánica en el acero galvanizado (el Zn es el ánodo y el acero el cátodo) que lo protege del ataque de la corrosión.
El titanio y sus aleaciones El titanio (Ti) es abundante en la naturaleza, constituye cerca del 1% de la corteza terrestre (el 8% corresponde al aluminio, el que abunda más). La densidad del titanio está entre la del aluminio y la del hierro; éste y otros datos se presentan en la tabla 6.1f). En las últimas décadas su importancia ha crecido debido a sus aplicaciones aeroespaciales,. En las que se aprovechan su peso ligero y razón resistencia-peso buena. Propiedades del titanio El coeficiente de expansión térmica del titanio es relativamente bajo entre los metales. Es más rígido y fuerte que el aluminio, y a altas temperaturas conserva buena resistencia. El titanio puro es reactivo, lo que da problemas durante el procesamiento, en especial en estado fundido. Sin embargo, a temperatura ambiente forma una película delgada de óxido (TiO2) adhesivo que recubre y proporciona una resistencia excelente contra la corrosión. El plomo y el estaño El plomo es un metal denso con punto de fusión bajo; otras de sus propiedades son resistencia baja, poca dureza (la palabra “suave” es apropiada para describirlo), ductilidad alta y buena resistencia a la corrosión. Además de su empleo como soldadura, las aplicaciones del plomo y sus aleaciones incluyen las siguientes: tubos para plomería, rodamientos, municiones, metales tipográficos, protección contra rayos X, baterías de almacenamiento y amortiguamiento de vibraciones. También se utiliza mucho en productos químicos y pinturas. Los elementos de aleación principales para el plomo son estaño y antimonio.
El oro (Au) es uno de los metales más pesados; es suave y se le da forma con facilidad, y posee un color amarillo distintivo que le agrega valor. Además de la moneda y joyería, sus aplicaciones incluyen contactos eléctricos (debido a su buena conductividad eléctrica y resistencia a la corrosión), trabajos dentales y recubrimiento de metales comunes para fines decorativos. El platino (Pt) es el único metal (entre los comunes) cuya densidad es mayor que la del oro. Aunque no se usa tanto como éste, sus aplicaciones son diversas e incluyen la joye- ría, termopares, contactos eléctricos y equipo catalítico para el control de la contaminación de los automóviles. La plata (Ag) es menos cara por unidad de peso que el oro o el platino. No obstante, su atractivo lustre “plateado” la hace un metal muy valioso para monedas, joyería y vajillas (que incluso adoptan el nombre del metal: “platería”). También se emplea como relleno en trabajos dentales. La plata tiene la conductividad eléctrica más elevada que cualquier metal, lo que la hace útil para contactos en aplicaciones electrónicas. Por último, debe mencionarse que el cloruro de plata y otros haluros del metal sensibles a la luz son la base de la fotografía.
Metales refractarios Los metales refractarios son aquellos capaces de soportar temperaturas elevadas. Los más importantes de este grupo son el molibdeno y el tungsteno; véase la tabla 6.1i). Otros metales refractarios son el columbio (Cb) y el tantalio (Ta). En general, estos metales y sus aleaciones pueden conservar una resistencia y dureza elevadas a temperaturas altas. Metales preciosos también llamados metales nobles debido a que son inactivos en cuanto a la química, incluyen el oro, platino y plata. Son metales atractivos, disponibles en cantidades limitadas, y a través de la historia de las civilizaciones se han empleado para acuñar monedas y respaldar el papel moneda. También se les usa mucho en joyería y aplicaciones similares que aprovechan su alto valor. Como grupo, los metales preciosos poseen densidad elevada, ductilidad buena, conductividad eléctrica alta, resistencia a la corrosión y temperaturas de fusión moderadas;
Las superaleaciones son un grupo de aleaciones de alto rendimiento diseñadas para satisfacer requerimientos muy exigentes de fortaleza y resistencia a la degradación de su superficie (corrosión y oxidación) a varias temperaturas de uso. Por lo general, las superaleaciones se dividen en tres grupos, de acuerdo con su cons- tituyente principal: hierro, níquel o cobalto. ➣ Aleaciones basadas en el hierro. Como ingrediente principal tienen hierro, aunque en ciertos casos éste es menor de 50% de la composición total. ➣ Aleaciones basadas en el níquel. Por lo general tienen mejor resistencia a las temperaturas altas que los aceros aleados. El níquel es el metal base. Los elementos principales de la aleación son el cromo y el cobalto; otros menores son el aluminio, titanio, molib de no, niobio (Nb) y hierro. Algunos nombres familiares en este grupo son los de Inconel, Hastelloy y Rene 41. ➣ Aleaciones basadas en el cobalto. Tienen al cobalto (alrededor del 40%) y cromo (quizá el 20%) como sus componentes principales. Otros elementos de la aleación incluyen al níquel, molibdeno y tungsteno.
El tratamiento térmico Se refiere a varios tipos de ciclos de calentamiento y enfriamiento que se ejecutan sobre un metal para cambiar en forma benéfica sus propiedades. Operan con la alteración de la microestructura básica del metal, que a su vez determina las propiedades mecánicas. Algunas de las operaciones de tratamiento térmico sólo son aplicables a cierto tipo de metales; por ejemplo, el tratamiento térmico del acero para formar martensita es algo especializado, toda vez que la martensita es exclusiva del acero.