Want to create interactive content? It’s easy in Genially!

Get started free

Python Challenge 2

Sayed Ali

Created on July 10, 2023

Python challenge for data analytics

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

PYTHON Challenge

START

GOODLUCK!

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

What is the datatype of the variable in the following line? X= 12

Integer

Float

String

Boolean

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

WRONG!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

9 25.600 POINTS

4 800 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

How is a Set indicated in Python?

curly braces { }

square brackets [ ]

parentheses ( )

curly braces with { : }

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

What is the output of the following code?

dict = {"ID":["name","John Doe"], "age": 30, "country": "USA"}

print(dict["ID"])

'name':'John Doe'

['name', 'John Doe']

'name'

'John Doe'

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

Which method is used to convert a string column into a datetime column in pandas?

df.parse_datetime()

df.convert_to_datetime()

df.string_to_datetime()

df.to_datetime()

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

START OVER?

6 3.200 POINTS

1 100 POINTS

2 200 POINTS

7 6.400 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

How can you sort a DataFrame by values in a specific column in descending order?

df.sort_values(['column_n\ ame'], ascending=False)

df.sort_value(['column_n\ ame'], ascending=False)

df.sort_by(column='column_n\ame', ascending=False)

df.sort(column='column_nam\e', ascending=False)

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

9 25.600 POINTS

4 800 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

How can you replace Null with a specific value in a pandas DataFrame?

df.fillna()

df.replace_null()

df.rep_nul()

df.fill_na()

6 3.200 POINTS

1 100 POINTS

7 6.400 POINTS

2 200 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

How can you drop a column 'B' in pandas DataFrame 'df'?

df.drop('B', axis=0)

df.drop('B', axis=1)

del(df['B'])

A & C are correct

6 3.200 POINTS

1 100 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

Which of the following methods used to draw a Histogram using matplotlib?

df['Column'].plot\(kind='histogram')

df['Column'].plot\(kind='hist')

df['Column'].plot\(type='hist')

df['Column'].plot\(kind='histogram')

6 3.200 POINTS

1 100 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

How can you handle missing values by filling them with the mean value of the column 'B' in pandas?

df.fillna(['B']'mean')

df.fill_with_mean('B')

df.mean_fillna('B')

df.fillna(df['B'].mean())

1 100 POINTS

6 3.200 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

4 800 POINTS

9 25.600 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

START OVER?

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

RIGHT!

8 12.800 POINTS

3 400 POINTS

9 25.600 POINTS

4 800 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

What does the df.dropna(axis=1) method do in pandas?

Drops columns with missing values

Drops rows with missing values

10

Drops rows and columns with missing values

None Of The Above

6 3.200 POINTS

1 100 POINTS

2 200 POINTS

7 6.400 POINTS

WRONG!

3 400 POINTS

8 12.800 POINTS

9 25.600 POINTS

4 800 POINTS

10 1.000.000 POINTS

5 1.600 POINTS

START OVER?

WELL DONE!

1 100 POINTS

6 3.200 POINTS

7 6.400 POINTS

2 200 POINTS

8 12.800 POINTS

3 400 POINTS

4 800 POINTS

9 25.600 POINTS

5 1.600 POINTS

10 1.000.000 POINTS

YOU WIN!

1.000.000 POINTS

BACK