Want to create interactive content? It’s easy in Genially!

Get started free

FUNCTION OPERATION AND COMPOSITION

gaia porfiri

Created on May 9, 2023

Start designing with a free template

Discover more than 1500 professional designs like these:

Witchcraft Presentation

Sketchbook Presentation

Vaporwave presentation

Animated Sketch Presentation

Pechakucha Presentation

Decades Presentation

Color and Shapes Presentation

Transcript

Function operations and composition of functions

PRESS START

section 01

Function operations

Let 𝒇 and π’ˆ be any two functions. You can add, subtract, multiply 𝒇(𝒙) and π’ˆ(𝒙) to form a new function. The domain of new function consist of the 𝒙 -values that are in the domains of both 𝒇(𝒙) and π’ˆ(𝒙).

function operations and composition

function operations and composition

Example n.1

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). a.𝒇(𝒙)=𝒙^𝟐+πŸπ’™βˆ’πŸ π’ˆ(𝒙)=π’™βˆ’πŸ“

function operations and composition

Example n.1

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). a.𝒇(𝒙)=𝒙^𝟐+πŸπ’™βˆ’πŸ π’ˆ(𝒙)=π’™βˆ’πŸ“ (𝒇+π’ˆ)(𝒙)=(𝒙^𝟐+πŸπ’™βˆ’πŸ)+(π’™βˆ’πŸ“) (𝒇+π’ˆ)(𝒙)=𝒙^𝟐+πŸ‘π’™βˆ’πŸ”

function operations and composition

Example n.1

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). a.𝒇(𝒙)=𝒙^𝟐+πŸπ’™βˆ’πŸ π’ˆ(𝒙)=π’™βˆ’πŸ“ (π’‡βˆ’π’ˆ)(𝒙)=(𝒙^𝟐+πŸπ’™βˆ’πŸ)βˆ’(π’™βˆ’πŸ“) (π’‡βˆ’π’ˆ)(𝒙)=𝒙^𝟐+πŸπ’™βˆ’πŸβˆ’π’™+πŸ“ (π’‡βˆ’π’ˆ)(𝒙)=𝒙^𝟐+𝒙+πŸ’

function operations and composition

Example n.1

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). a.𝒇(𝒙)=𝒙^𝟐+πŸπ’™βˆ’πŸ π’ˆ(𝒙)=π’™βˆ’πŸ“ (π’‡βˆ—π’ˆ)(𝒙)=(𝒙^𝟐+πŸπ’™βˆ’πŸ)βˆ—(π’™βˆ’πŸ“) (π’‡βˆ—π’ˆ)(𝒙)=𝒙^πŸ‘βˆ’πŸ‘π’™^πŸβˆ’πŸπŸπ’™+πŸ“

function operations and composition

Example n.2

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). b. 𝒇(𝒙)=𝒙^πŸβˆ’πŸ–πŸ π’ˆ(𝒙)=𝒙+πŸ—

function operations and composition

Example n.2

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). b. 𝒇(𝒙)=𝒙^πŸβˆ’πŸ–πŸ π’ˆ(𝒙)=𝒙+πŸ— (𝒇+π’ˆ)(𝒙)=(𝒙^πŸβˆ’πŸ–πŸ) +(𝒙+πŸ—) (𝒇+π’ˆ)(𝒙)=𝒙^𝟐+π’™βˆ’πŸ•πŸ

function operations and composition

Example n.2

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). b. 𝒇(𝒙)=𝒙^πŸβˆ’πŸ–πŸ π’ˆ(𝒙)=𝒙+πŸ— (π’‡βˆ’π’ˆ)(𝒙)=(𝒙^πŸβˆ’πŸ–πŸ)βˆ’(𝒙+πŸ—) (π’‡βˆ’π’ˆ)(𝒙)=𝒙^πŸβˆ’πŸ–πŸβˆ’π’™βˆ’πŸ— (π’‡βˆ’π’ˆ)(𝒙)=𝒙^πŸβˆ’π’™βˆ’πŸ—πŸŽ

function operations and composition

Example n.2

Find (𝒇+π’ˆ)(𝒙), (π’‡βˆ’π’ˆ)(𝒙),(π’‡βˆ—π’ˆ)(𝒙) for each 𝒇(𝒙) and π’ˆ(𝒙). b. 𝒇(𝒙)=𝒙^πŸβˆ’πŸ–πŸ π’ˆ(𝒙)=𝒙+πŸ— (π’‡βˆ—π’ˆ)(𝒙)=(𝒙^πŸβˆ’πŸ–πŸ)βˆ—(𝒙+πŸ—) (π’‡βˆ—π’ˆ)(𝒙)=𝒙^πŸ‘+πŸ—π’™^πŸβˆ’πŸ–πŸπ’™βˆ’πŸ•πŸπŸ—

composition of functions

The composition of function 𝒇 with function π’ˆ is defined by (π’‡βˆ˜π’ˆ)(𝒙)=𝒇(π’ˆ(𝒙)) The domain of the composite function π’‡βˆ˜π’ˆ is the set of all such that: 1. 𝒙 is in the domain of π’ˆ and 2. π’ˆ(𝒙) is in the domain of 𝒇.

composition of functions

f f(g(x))

g g(x)

g(x) must be in the domain of f

composition of functions

Example n.1

Find each composite function. a.𝒇(𝒙)=πŸπ’™βˆ’πŸ‘ π’ˆ(𝒙)=𝒙+𝟏 (π’‡βˆ˜π’ˆ)(𝒙)=?

composition of functions

Example n.1

Find each composite function. a.𝒇(𝒙)=πŸπ’™βˆ’πŸ‘ π’ˆ(𝒙)=𝒙+𝟏 (π’‡βˆ˜π’ˆ)(𝒙)=? (π’‡βˆ˜π’ˆ)(𝒙)=𝒇(π’ˆ(𝒙)) 𝒇(π’ˆ(𝒙))=𝟐(π’ˆ(𝒙))βˆ’πŸ‘ 𝒇(π’ˆ(𝒙))=𝟐(𝒙+𝟏)βˆ’πŸ‘ 𝒇(π’ˆ(𝒙))=πŸπ’™+πŸβˆ’πŸ‘ 𝒇(π’ˆ(𝒙))=πŸπ’™βˆ’πŸ

composition of functions

Example n.2

Find each composite function. b.𝒇(𝒙)=π’™βˆ’πŸ‘ π’ˆ(𝒙)=𝒙^𝟐+𝟏 (π’ˆβˆ˜π’‡)(𝒙)=?

composition of functions

Example n.2

Find each composite function. b.𝒇(𝒙)=π’™βˆ’πŸ‘ π’ˆ(𝒙)=𝒙^𝟐+𝟏 (π’ˆβˆ˜π’‡)(𝒙)=? (π’ˆβˆ˜π’‡)(𝒙)=π’ˆ(𝒇(𝒙)) π’ˆ(𝒇(𝒙))=(𝒇(𝒙))^𝟐+𝟏 π’ˆ(𝒇(𝒙))=(π’™βˆ’πŸ‘)^𝟐+𝟏 π’ˆ(𝒇(𝒙))=𝒙^πŸβˆ’πŸ”π’™+πŸ—+𝟏 π’ˆ(𝒇(𝒙))=𝒙^πŸβˆ’πŸ”π’™+𝟏𝟎

composition of functions

Example n.3

Find each composite function. c.𝒇(𝒙)=𝟐/(π’™βˆ’πŸ‘) π’ˆ(𝒙)=𝟏/𝒙 (π’‡βˆ˜π’ˆ)(𝒙)=? (π’‡βˆ˜π’ˆ)(𝒙)=𝒇(π’ˆ(𝒙)) 𝒇(π’ˆ(𝒙))=𝟐/(π’ˆ(𝒙)βˆ’πŸ‘) 𝟏/π’™β‰ πŸŽ π’™β‰ πŸŽ 𝒇(π’ˆ(𝒙))=𝟐/(𝟏/π’™βˆ’πŸ‘) 𝟏/π’™βˆ’πŸ‘β‰ πŸŽ π’™β‰ πŸ/πŸ‘ 𝒇(π’ˆ(𝒙))=πŸπ’™/(πŸβˆ’πŸ‘π’™)

composition of functions

Example n.4

Find each composite function. d. 𝒇(𝒙)=𝟐/𝒙 π’ˆ(𝒙)=𝟏/𝒙 (π’ˆβˆ˜π’‡)(𝒙)=? (π’ˆβˆ˜π’‡)(𝒙)=π’ˆ(𝒇(𝒙)) π’ˆ(𝒇(𝒙))=𝟏/𝒇(𝒙) 𝟐/π’™β‰ πŸŽ π’™β‰ πŸŽ π’ˆ(𝒇(𝒙))=𝟏/(𝟐/𝒙) π’ˆ(𝒇(𝒙))=𝒙/𝟐

composition of functions

Example n.5

Find and then evaluate each composite function.e.𝒇(𝒙)=βˆšπ’™ π’ˆ(𝒙)=π’™βˆ’πŸ (π’‡βˆ˜π’ˆ)(πŸ”)=?

composition of functions

Example n.5

Find and then evaluate each composite function.e.𝒇(𝒙)=βˆšπ’™ π’ˆ(𝒙)=π’™βˆ’πŸ (π’‡βˆ˜π’ˆ)(πŸ”)=? (π’‡βˆ˜π’ˆ)(𝒙)=𝒇(π’ˆ(𝒙)) 𝒇(π’ˆ(𝒙))=√(π’ˆ(𝒙) ) 𝒇(π’ˆ(𝒙))=√(π’™βˆ’πŸ) 𝒇(π’ˆ(πŸ”))=√(πŸ”βˆ’πŸ)𝒇(π’ˆ(πŸ”))=βˆšπŸ’ 𝒇(π’ˆ(πŸ”))=𝟐

composition of functions

Example n.5

Find and then evaluate each composite function.f.𝒇(𝒙)=πŸ”π’™βˆ’πŸ π’ˆ(𝒙)=(𝒙+πŸ‘)/𝟐 (π’ˆβˆ˜π’‡)(𝟐)=? (π’ˆβˆ˜π’‡)(𝒙)=π’ˆ(𝒇(𝒙)) π’ˆ(𝒇(𝒙))=(𝒇(𝒙)+πŸ‘)/𝟐 π’ˆ(𝒇(𝒙))=((πŸ”π’™βˆ’πŸ)+πŸ‘)/𝟐 π’ˆ(𝒇(𝒙))=(πŸ”π’™+𝟐)/𝟐=(𝟐(πŸ‘π’™+𝟏))/𝟐 π’ˆ(𝒇(𝒙))=πŸ‘π’™+𝟏 π’ˆ(𝒇(𝟐))=πŸ‘βˆ—πŸ+𝟏 π’ˆ(𝒇(𝟐))=πŸ•

GAME OVER

thank you!