Want to create interactive content? It’s easy in Genially!

Get started free

longitud o norma de un vector

zizozuz zizozuz

Created on December 1, 2021

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

Longitud o norma de un vector

Integrantes : Herrera Yuliana Simbaña Leysi Alpala Anapaula Bravo Cristhoper

longitud o norma de un vector

ejercicio : determinar la norma del vector a=(2,-3)

Si a es un vector de R n entonces la norma esta dada por :

es decir , recordemos que , si

Graficamente

Por tanto, basándonos en las propiedades básicas que la determinación de la longitud tiene en el espacio euclídeo habitual, definimos matemáticamente qué condiciones mínimas debe satisfacer un operador que actúe sobre un vector para poder ser considerado un operador norma en cualquier geometría. De esta forma, aparecen varias posibilidades que han sido muy fructíferas en diversos campos entre los que cabe destacar la astrofísica y la cosmología. En espacios vectoriales es sinónimo de longitud de un vector.

Un vector es un elemento de un espacio vectorial del que, en ocasiones, especialmente en física y geometría, interesa conocer su longitud. Para ello se hace necesario definir un operador norma que determine la longitud o magnitud del vector bajo consideración ya que este acto, pese a lo que pudiéramos creer, no es un problema trivial; especialmente desde la aparición de las geometrías no euclídeas para las que surge, asociada al concepto de longitud, la noción de geodésica. Para ampliar estas ideas conviene conocer la geometría riemanniana y la geometría diferencial.

Siempre es no negativa e independiente del sentido (orientación) de la medición. La longitud debe ser directamente proporcional al tamaño (es decir, doble -o triple- de tamaño significa doble -o triple- de longitud). La longitud entre dos puntos será siempre menor o igual que la suma de longitudes desde esos mismos dos puntos a un tercero diferente de ellos (desigualdad triangular: la suma de dos lados de un triángulo nunca es menor que el tercer lado, también generalizada en la desigualdad de Cauchy-Schwarz). Se presentan dos maneras de forma, una casi directa y apunta a lo dicho: longitud de vector. La otra usa la noción de operador y mayor simbolismo de la matemática formal (tipo Bourbaki).

La definición general de norma se basa en generalizar a espacios vectoriales abstractos la noción de módulo de un vector de un espacio euclídeo. Recuérdese que en un espacio no euclídeo el concepto de camino más corto entre dos puntos ya no es identificable necesariamente con el de la línea recta; por ello, se utilizan las propiedades operacionales de la norma euclídea definida más arriba para extraer las condiciones que debe cumplir la "longitud de un vector", o norma vectorial, en un espacio vectorial cualquiera. Estas condiciones básicas son: