Woda - występowanie i rola w przyrodzie.
Woda (tlenek wodoru; nazwa systematyczna IUPAC: oksydan) – związek chemiczny o wzorze H2O, występujący w warunkach standardowych w stanie ciekłym. W stanie gazowym wodę określa się mianem pary wodnej, a w stałym stanie skupienia – lodem. Słowo „woda” jako nazwa związku chemicznego może się odnosić do każdego stanu skupienia.
- Woda jest bardzo dobrym rozpuszczalnikiem dla substancji polarnych. Większość (około 97,38%) występującej na Ziemi wody jest „słona”, to znaczy zawiera dużo rozpuszczonych soli, głównie chlorku sodu. W naturalnej wodzie rozpuszczone są gazy atmosferyczne, z których w największym stężeniu znajduje się dwutlenek węgla.
Woda naturalna w wielu przypadkach przed zastosowaniem musi zostać uzdatniona. Proces uzdatniania wody dotyczy zarówno wody pitnej, jak i przemysłowej.
Występowanie wody cz. 1
Woda jest jedną z najpospolitszych substancji we Wszechświecie. Cząsteczka wody jest trzecią najbardziej rozpowszechnioną molekułą w ośrodku międzygwiazdowym, po cząsteczkowym wodorze i tlenku węgla. Jest również szeroko rozpowszechniona w Układzie Słonecznym: stanowi istotny element budowy Ceres i księżyców lodowych krążących wokół planet-olbrzymów, jako domieszka występuje w ich atmosferach, a przypuszcza się, że duże jej ilości znajdują się we wnętrzach tych planet. Jako lód występuje także na części planetoid, a zapewne również na obiektach transneptunowych.
Występowanie wody cz.2
Woda jest bardzo rozpowszechniona także na powierzchni Ziemi. Występuje głównie w oceanach, które pokrywają 70,8% powierzchni globu, ale także w rzekach, jeziorach i w postaci stałej w lodowcach. Część wody znajduje się w atmosferze (chmury, para wodna). Niektóre związki chemiczne zawierają cząsteczki wody w swojej budowie (hydraty – określa się ją wówczas mianem wody krystalizacyjnej). Zawartość wody włączonej w strukturę minerałów w płaszczu Ziemi może przekraczać łączną zawartość wody w oceanach i innych zbiornikach powierzchniowych nawet dziesięciokrotnie.
Występowanie wody cz.3
Woda występująca w przyrodzie jest roztworem soli i gazów. Najwięcej soli mineralnych zawiera woda morska i wody mineralne; najmniej woda z opadów atmosferycznych. Wodę o małej zawartości składników mineralnych nazywamy wodą miękką, natomiast zawierającą znaczne ilości soli wapnia i magnezu – wodą twardą. Oprócz tego wody naturalne zawierają rozpuszczone substancje pochodzenia organicznego, na przykład mocznik, kwasy humusowe.
Pochodzenie wody na Ziemi
Zagadnienie pochodzenia wody na Ziemi, jak i tego, że na Ziemi jest znacznie więcej wody niż na innych skalistych planetach Układu Słonecznego, jest wciąż niejasne. Istnieje kilka hipotez co do tego, w jaki sposób woda mogła zebrać się na powierzchni Ziemi w ilości wystarczającej do wytworzenia oceanów. Główna hipoteza głosi, że woda w stanie wolnym lub w związkach chemicznych była obecna na Ziemi w trakcie formowania się Ziemi. Przy weryfikowaniu hipotez dotyczących pochodzenia wody uwzględnia się skład izotopowy wodoru z różnych źródeł. Badania składu izotopowego wodoru uwięzionego w najstarszych skałach znalezionych na Ziemi wykazują zgodność składu izotopowego z wodą oceaniczną. Ważniejszymi innymi hipotezami są:
- hipoteza solarna – wiatr słoneczny niesie za sobą jądra (atomy) wodoru, które wchodzą w reakcję z tlenem, tworząc cząsteczki wody
- uderzenia asteroid – Ziemia ukształtowała się wewnątrz linii śniegu, teorie zakładają, że lekkie pierwiastki i związki chemiczne, w tym i woda, powinny być wymiecione przez promieniowanie tworzącej się gwiazdy. Wodę na Ziemię miałyby przynieść duże obiekty z zewnętrznego Układu Słonecznego (spoza linii śniegu), uderzające w naszą planetę w początkach jej istnienia.
- hipoteza geochemiczna – zakłada powstawanie wody na skutek reakcji chemicznych w płaszczu Ziemi. Dwutlenek krzemu może tam reagować z wodorem, w efekcie czego powstaje ciekła woda i krzemowodór, SiH4. Proces zachodzi przy ciśnieniu sięgającym 200 tysięcy atmosfer. Woda pozostaje uwięziona w skale i z czasem wydostaje się na powierzchnię, między innymi podczas erupcji wulkanów.
Woda na innych ciałach niebieskich
Obecność wody (w postaci lodu) na Księżycu w głębi zacienionego krateru została wykazana podczas misji LCROSS 8 października 2009. NASA odkryła wodę na Marsie przez bezpośrednią obserwację 31 lipca 2008 roku, a analizy jego atmosfery wskazują, że Mars utracił w geologicznej historii ilość wody wystarczającą do utworzenia oceanu. Znaczące ilości wody stwierdzono m.in. w pierścieniach Saturna oraz na księżycach lodowych. Pięć z nich posiada oceany podpowierzchniowe, niektóre zamknięte między warstwami lodu o różnej strukturze, a niektóre w kontakcie ze skalistym wnętrzem, co daje szanse na aktywność hydrotermalną i potencjał do rozwinięcia się życia. W szczególności ocean na Enceladusie, księżycu Saturna, ma bezpośredni kontakt z powierzchnią poprzez aktywność gejzerów.
Właściwości fizyczne wody
- temperatura topnienia pod ciśnieniem 1 atm: 0 °C = 273,152519 K
- temperatura wrzenia pod ciśnieniem 1 atm: 99,97 °C = 373,12 K
- punkt potrójny: 0,01 °C = 273,16 K, 611,657 Pa
- gęstość w temperaturze 3,98 °C: 1 kg/l (gęstość maksymalna)[a]
- temperatura krytyczna: 647,096 K[16] (ok. 374 °C)
- ciśnienie krytyczne: 22,064 MPa[16]
- ciepło właściwe: 4187 J/(kg·K) = 1 kcal/(kg·K)
- ciepło parowania: 2257 kJ/kg
- ciepło topnienia: 333,7 kJ/kg
- masa cząsteczkowa: 18,01524 Da
- względna przenikalność elektryczna w stałym polu elektrycznym: 87,9 (0 °C), 78,4 (25 °C), 55,6 (100 °C)
- napięcie powierzchniowe: 72,4·10−3 N/m (18 °C)[17].
- barwa: lekko jasnoniebieska (w małych objętościach wydaje się bezbarwna)[18][19]
- zapach: bezwonna
- konduktywność (σ) lub rezystywność (ρ): dla dobrej jakości wody destylowanej lub demineralizowanej ρ > 18 MΩm
- odczyn: 7,0
- Dla wody zawierającej inne substancje określa się szereg dodatkowych właściwości, np.:
barwa wody
mętność, czyli ilość zawiesin w wodzie (woda chemicznie czysta: klarowna)
twardość (woda chemicznie czysta: 0)
twardość ogólna
twardość węglanowa (przemijająca)
twardość niewęglanowa (trwała)
utlenialność (woda chemicznie czysta: 0)
Aktywność promieniotwórcza wody
Aktywność wody pitnej nie powinna przekraczać 0,5 Bq/l w przypadku promieniowania alfa i 1 Bq/l w przypadku promieniowania beta. Taki poziom aktywność powinien skutkować roczną dawką na poziomie ok. 1 mSv lub mniejszym. Powyżej tych poziomów WHO zaleca dokładniejsze określenie, który izotop odpowiada na podwyższoną aktywność i porównanie aktywności z wartościami sugerowanymi. Przy dawkach >1mSv/rok zaleca się rozważanie oczyszczenia wody w celu zmniejszenia jej aktywności.
Za aktywność własną wody odpowiada przede wszystkim aktywność izotopów tlenu.
Kolor wody
Lekko niebieski kolor wody wynika z pochłaniania przez nią promieniowania elektromagnetycznego z zakresu światła widzialnego odpowiadającego barwie czerwonej (światło czerwone jest absorbowane przez wodę ok. 100 razy silniej niż niebieskie). Maksimum silnej absorpcji przypada na 760 nm i ramię tego pasma wchodzi częściowo w zakres widzialny (<700 nm). Obecne są też dwa słabe maksima przy 605 i 660 nm. Pochłaniane promieniowanie powoduje przejścia pomiędzy poziomami oscylacyjnymi, a w efekcie silnie wzbudzone drgania atomów cząsteczek wody. Zachodzenie pasm absorpcji oscylacyjnej na zakres widzialny jest unikalną cechą wody i stanowić może jedyny przypadek takiego źródła barwy substancji. Pozostałe barwne cząsteczki i atomy zawdzięczają swój kolor absorpcji światła widzialnego przez elektrony (barwa może być też wynikiem zjawisk optycznych).
W stanie gazowym pasma absorpcji wody przesunięte są w kierunku światła widzialnego (wyższej częstotliwości), a w stanie stałym w kierunku podczerwieni (niższej częstotliwości), co wynika odpowiednio z osłabienia i wzmocnienia oddziaływań wodorowych. Lód wykazuje także barwę niebieską w świetle przechodzącym, a jego widmo IR jest zbliżone do widma wody ciekłej. Światło przechodzące przez śnieg ma szczególnie intensywnie niebieską barwę w wyniku wielokrotnego rozproszenia.
W ciężkiej wodzie (D2O) drgania oscylacyjne przesunięte są znacząco w kierunku podczerwieni (pasmo 760 nm wody znajduje się przy ok. 1000 nm), w wyniku czego ciężka woda jest bezbarwna. Zjawisko to jest jednym z dowodów na poprawność przypisania barwy wody absorpcji oscylacyjnej.
Budowa i właściwości chemiczne
Cząsteczki wody są nieliniowe, a wiązania H–O są silnie spolaryzowane i stąd woda ma trwały moment dipolowy – czyli jest silnie polarna. Kąt między wiązaniami wodór-tlen-wodór (H―O―H) w fazie ciekłej wynosi ok. 105°. W postaci stałej (lodu) kąt między tymi wiązaniami jest równy ok. 108°.
Woda jest najtrwalszym związkiem tlenowca z wodorem. Jej dysocjacja termiczna
H2O ⇌ H2 + ½O2 ΔE 285,8 kJ/mol
staje się znacząca dopiero w temperaturze kilku tysięcy stopni Celsjusza. Np. w 3200 °C zdysocjowane na pierwiastki jest ok. 30% cząsteczek H2O (dla porównania siarkowodór w temperaturze 1700 °C jest zdysocjowany w ok. 75%)[22].
W fazie ciekłej nieustannie powstają i pękają wiązania wodorowe pomiędzy cząsteczkami wody. Woda ulega łatwej protonacji i deprotonacji od kwasów, tworząc jon hydroniowy H3O+. Jon ten również łączy się wiązaniami wodorowymi, tworząc kation Zundela H5O2+, kation Eigena H9O4+ i większe aglomeraty. W strukturze krystalicznej wiązania wodorowe nie ulegają zrywaniu i determinują heksagonalny układ krystalograficzny wody. Gdy podda się wodę ciśnieniu większemu niż 3900 MPa, zwiększa ona gęstość do około 1,5 g/cm³ i powstaje lód o temperaturze powyżej 0 °C.
Wykonał Mateusz Stachowski
Zródła -Wikipedia
Prezentacja o wodzie
stachowski.mati
Created on May 10, 2021
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Modern Presentation
View
Terrazzo Presentation
View
Colorful Presentation
View
Modular Structure Presentation
View
Chromatic Presentation
View
City Presentation
View
News Presentation
Explore all templates
Transcript
Woda - występowanie i rola w przyrodzie.
Woda (tlenek wodoru; nazwa systematyczna IUPAC: oksydan) – związek chemiczny o wzorze H2O, występujący w warunkach standardowych w stanie ciekłym. W stanie gazowym wodę określa się mianem pary wodnej, a w stałym stanie skupienia – lodem. Słowo „woda” jako nazwa związku chemicznego może się odnosić do każdego stanu skupienia.
Woda naturalna w wielu przypadkach przed zastosowaniem musi zostać uzdatniona. Proces uzdatniania wody dotyczy zarówno wody pitnej, jak i przemysłowej.
Występowanie wody cz. 1
Woda jest jedną z najpospolitszych substancji we Wszechświecie. Cząsteczka wody jest trzecią najbardziej rozpowszechnioną molekułą w ośrodku międzygwiazdowym, po cząsteczkowym wodorze i tlenku węgla. Jest również szeroko rozpowszechniona w Układzie Słonecznym: stanowi istotny element budowy Ceres i księżyców lodowych krążących wokół planet-olbrzymów, jako domieszka występuje w ich atmosferach, a przypuszcza się, że duże jej ilości znajdują się we wnętrzach tych planet. Jako lód występuje także na części planetoid, a zapewne również na obiektach transneptunowych.
Występowanie wody cz.2
Woda jest bardzo rozpowszechniona także na powierzchni Ziemi. Występuje głównie w oceanach, które pokrywają 70,8% powierzchni globu, ale także w rzekach, jeziorach i w postaci stałej w lodowcach. Część wody znajduje się w atmosferze (chmury, para wodna). Niektóre związki chemiczne zawierają cząsteczki wody w swojej budowie (hydraty – określa się ją wówczas mianem wody krystalizacyjnej). Zawartość wody włączonej w strukturę minerałów w płaszczu Ziemi może przekraczać łączną zawartość wody w oceanach i innych zbiornikach powierzchniowych nawet dziesięciokrotnie.
Występowanie wody cz.3
Woda występująca w przyrodzie jest roztworem soli i gazów. Najwięcej soli mineralnych zawiera woda morska i wody mineralne; najmniej woda z opadów atmosferycznych. Wodę o małej zawartości składników mineralnych nazywamy wodą miękką, natomiast zawierającą znaczne ilości soli wapnia i magnezu – wodą twardą. Oprócz tego wody naturalne zawierają rozpuszczone substancje pochodzenia organicznego, na przykład mocznik, kwasy humusowe.
Pochodzenie wody na Ziemi
Zagadnienie pochodzenia wody na Ziemi, jak i tego, że na Ziemi jest znacznie więcej wody niż na innych skalistych planetach Układu Słonecznego, jest wciąż niejasne. Istnieje kilka hipotez co do tego, w jaki sposób woda mogła zebrać się na powierzchni Ziemi w ilości wystarczającej do wytworzenia oceanów. Główna hipoteza głosi, że woda w stanie wolnym lub w związkach chemicznych była obecna na Ziemi w trakcie formowania się Ziemi. Przy weryfikowaniu hipotez dotyczących pochodzenia wody uwzględnia się skład izotopowy wodoru z różnych źródeł. Badania składu izotopowego wodoru uwięzionego w najstarszych skałach znalezionych na Ziemi wykazują zgodność składu izotopowego z wodą oceaniczną. Ważniejszymi innymi hipotezami są:
Woda na innych ciałach niebieskich
Obecność wody (w postaci lodu) na Księżycu w głębi zacienionego krateru została wykazana podczas misji LCROSS 8 października 2009. NASA odkryła wodę na Marsie przez bezpośrednią obserwację 31 lipca 2008 roku, a analizy jego atmosfery wskazują, że Mars utracił w geologicznej historii ilość wody wystarczającą do utworzenia oceanu. Znaczące ilości wody stwierdzono m.in. w pierścieniach Saturna oraz na księżycach lodowych. Pięć z nich posiada oceany podpowierzchniowe, niektóre zamknięte między warstwami lodu o różnej strukturze, a niektóre w kontakcie ze skalistym wnętrzem, co daje szanse na aktywność hydrotermalną i potencjał do rozwinięcia się życia. W szczególności ocean na Enceladusie, księżycu Saturna, ma bezpośredni kontakt z powierzchnią poprzez aktywność gejzerów.
Właściwości fizyczne wody
- temperatura topnienia pod ciśnieniem 1 atm: 0 °C = 273,152519 K
- temperatura wrzenia pod ciśnieniem 1 atm: 99,97 °C = 373,12 K
- punkt potrójny: 0,01 °C = 273,16 K, 611,657 Pa
- gęstość w temperaturze 3,98 °C: 1 kg/l (gęstość maksymalna)[a]
- temperatura krytyczna: 647,096 K[16] (ok. 374 °C)
- ciśnienie krytyczne: 22,064 MPa[16]
- ciepło właściwe: 4187 J/(kg·K) = 1 kcal/(kg·K)
- ciepło parowania: 2257 kJ/kg
- ciepło topnienia: 333,7 kJ/kg
- masa cząsteczkowa: 18,01524 Da
- względna przenikalność elektryczna w stałym polu elektrycznym: 87,9 (0 °C), 78,4 (25 °C), 55,6 (100 °C)
- napięcie powierzchniowe: 72,4·10−3 N/m (18 °C)[17].
- barwa: lekko jasnoniebieska (w małych objętościach wydaje się bezbarwna)[18][19]
- zapach: bezwonna
- konduktywność (σ) lub rezystywność (ρ): dla dobrej jakości wody destylowanej lub demineralizowanej ρ > 18 MΩm
- odczyn: 7,0
- Dla wody zawierającej inne substancje określa się szereg dodatkowych właściwości, np.:
barwa wody mętność, czyli ilość zawiesin w wodzie (woda chemicznie czysta: klarowna) twardość (woda chemicznie czysta: 0) twardość ogólna twardość węglanowa (przemijająca) twardość niewęglanowa (trwała) utlenialność (woda chemicznie czysta: 0)Aktywność promieniotwórcza wody
Aktywność wody pitnej nie powinna przekraczać 0,5 Bq/l w przypadku promieniowania alfa i 1 Bq/l w przypadku promieniowania beta. Taki poziom aktywność powinien skutkować roczną dawką na poziomie ok. 1 mSv lub mniejszym. Powyżej tych poziomów WHO zaleca dokładniejsze określenie, który izotop odpowiada na podwyższoną aktywność i porównanie aktywności z wartościami sugerowanymi. Przy dawkach >1mSv/rok zaleca się rozważanie oczyszczenia wody w celu zmniejszenia jej aktywności. Za aktywność własną wody odpowiada przede wszystkim aktywność izotopów tlenu.
Kolor wody
Lekko niebieski kolor wody wynika z pochłaniania przez nią promieniowania elektromagnetycznego z zakresu światła widzialnego odpowiadającego barwie czerwonej (światło czerwone jest absorbowane przez wodę ok. 100 razy silniej niż niebieskie). Maksimum silnej absorpcji przypada na 760 nm i ramię tego pasma wchodzi częściowo w zakres widzialny (<700 nm). Obecne są też dwa słabe maksima przy 605 i 660 nm. Pochłaniane promieniowanie powoduje przejścia pomiędzy poziomami oscylacyjnymi, a w efekcie silnie wzbudzone drgania atomów cząsteczek wody. Zachodzenie pasm absorpcji oscylacyjnej na zakres widzialny jest unikalną cechą wody i stanowić może jedyny przypadek takiego źródła barwy substancji. Pozostałe barwne cząsteczki i atomy zawdzięczają swój kolor absorpcji światła widzialnego przez elektrony (barwa może być też wynikiem zjawisk optycznych). W stanie gazowym pasma absorpcji wody przesunięte są w kierunku światła widzialnego (wyższej częstotliwości), a w stanie stałym w kierunku podczerwieni (niższej częstotliwości), co wynika odpowiednio z osłabienia i wzmocnienia oddziaływań wodorowych. Lód wykazuje także barwę niebieską w świetle przechodzącym, a jego widmo IR jest zbliżone do widma wody ciekłej. Światło przechodzące przez śnieg ma szczególnie intensywnie niebieską barwę w wyniku wielokrotnego rozproszenia. W ciężkiej wodzie (D2O) drgania oscylacyjne przesunięte są znacząco w kierunku podczerwieni (pasmo 760 nm wody znajduje się przy ok. 1000 nm), w wyniku czego ciężka woda jest bezbarwna. Zjawisko to jest jednym z dowodów na poprawność przypisania barwy wody absorpcji oscylacyjnej.
Budowa i właściwości chemiczne
Cząsteczki wody są nieliniowe, a wiązania H–O są silnie spolaryzowane i stąd woda ma trwały moment dipolowy – czyli jest silnie polarna. Kąt między wiązaniami wodór-tlen-wodór (H―O―H) w fazie ciekłej wynosi ok. 105°. W postaci stałej (lodu) kąt między tymi wiązaniami jest równy ok. 108°. Woda jest najtrwalszym związkiem tlenowca z wodorem. Jej dysocjacja termiczna H2O ⇌ H2 + ½O2 ΔE 285,8 kJ/mol staje się znacząca dopiero w temperaturze kilku tysięcy stopni Celsjusza. Np. w 3200 °C zdysocjowane na pierwiastki jest ok. 30% cząsteczek H2O (dla porównania siarkowodór w temperaturze 1700 °C jest zdysocjowany w ok. 75%)[22]. W fazie ciekłej nieustannie powstają i pękają wiązania wodorowe pomiędzy cząsteczkami wody. Woda ulega łatwej protonacji i deprotonacji od kwasów, tworząc jon hydroniowy H3O+. Jon ten również łączy się wiązaniami wodorowymi, tworząc kation Zundela H5O2+, kation Eigena H9O4+ i większe aglomeraty. W strukturze krystalicznej wiązania wodorowe nie ulegają zrywaniu i determinują heksagonalny układ krystalograficzny wody. Gdy podda się wodę ciśnieniu większemu niż 3900 MPa, zwiększa ona gęstość do około 1,5 g/cm³ i powstaje lód o temperaturze powyżej 0 °C.
Wykonał Mateusz Stachowski
Zródła -Wikipedia