Want to create interactive content? It’s easy in Genially!
MBC-6-M2-R3
CEV PUCE
Created on May 1, 2021
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Audio tutorial
View
Pechakucha Presentation
View
Desktop Workspace
View
Decades Presentation
View
Psychology Presentation
View
Medical Dna Presentation
View
Geometric Project Presentation
Transcript
Algoritmos de la Biología Computacional
Evaluación de PSSM.
Evaluación de PSSM
Performance metrics
Regression
- MSPE
- MSAE
- R Square
- Adjust R Square
Classification
- precision recall
- ROC- AUC
- Accuracy
- Log- loss
Para evaluar una PSSM debemos medir su desempeño. Debemos medir que tan cercanas están las predicciones de las observaciones. Es decir, que tan cercanos están los valores predichos de los valores observados o esperados. Para ello, usaremos medidas como accuracy, PCC, MSE, MCC, ROC, AUC, entre otras.
Others
- CV Error
- Heuristic methods to find K
- Bleu Score (NPL)
Unsupervised
- Models
- Rand Index
- Mutual
Performance metrics
Medición Predicción0.4050 0.8344 0.9373 1.0000 0.8161 0.6388 0.6752 0.9841 0.0253 0.0000 0.3196 0.5388 0.6764 0.6247 0.1872 0.1921 0.4220 0.6546 0.6545 0.6546 0.7917 0.1342 0.4405 0.3551 0.1548 0.0000 0.2740 0.1993 0.4399 0.6461 0.1725 0.3916 0.0539 0.0000 0.3795 0.5623 0.2242 0.1968 0.3108 0.2114
Coeficiente de correlación de Pearson
Coeficiente de correlación de Pearson
Correlation Coefficient: Simple Definition, Formula, Easy Calculation Steps. (n.d.). Statistics How To. Retrieved April 1, 2021, from https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/
Error cuadrático medio o mean squared error
Exactitud o accuracy
Ordenar
Correlación de Matthews
False Negative True Negative
True Positive False Negative
Correlación de Matthews
5 8
9 5
ROC curves
False Negative True Negative
True Positive False Negative
ROC curves
False Negative True Negative
True Positive False Negative
ROC curves
AUC = 0.5 AUC = 1.0
ROC curves
Serengil, S. (2020, December 10). A Gentle Introduction to ROC Curve and AUC in Machine Learning. Sefik Ilkin Serengil. https://sefiks.com/2020/12/10/a-gentle-introduction-to-roc-curve-and-auc/
AUC (area under the ROC curve)
En resumen:
MCC y PCC Random = 0.0 Perfecto = 1.0 (or -1) ROC (AUC) Random = 0.5 Perfecto = 1 (or 0)
Referencias
- Morten Nielsen. (2019, July). Performance measures. 22125 - Algorithms in Bioinformatics, DTU. https://kurser.dtu.dk/course/22125
- Serengil, S. (2020, December 10). A Gentle Introduction to ROC Curve and AUC in Machine Learning. Sefik Ilkin Serengil. https://sefiks.com/2020/12/10/a-gentle-introduction-to-roc-curve-and-auc/
