Prezentacja
FIZYKA - FALE
Indeks
Światło widzialne
Prom. nadfioletowe
Prom. gamma
Prom. rengenowskie
Światło widzialne
Światło widzialne – część promieniowania elektromagnetycznego, na którą reaguje siatkówka oka w procesie widzenia. Dla człowieka promieniowanie to zawiera się w przybliżeniu w zakresie długości fal 380–750 nm, dla zwierząt zakres ten bywa nieco odmienny (lecz o zbliżonych wartościach).
Wyjaśnienie
Energia promieniowania słonecznego (irradiancja) docierającego do powierzchni Ziemi zawiera się w większości między falami o długości 280–4000 nm i odpowiada dość dokładnie promieniowaniu ciała doskonale czarnego w temperaturze około 6000 K. W tabeli podany jest podział promieniowania słonecznego w różnych pasmach. Około połowy jego całkowitej energii znajduje się w świetle widzialnym i ultrafiolecie, a druga połowa znajduje się w bliskiej i średniej podczerwieni (700–4000 nm).
Pasmo Długość [nm] Irradiancja [W/m2] [%]
ultrafiolet poniżej 350 62 4,5
bliski ultrafiolet 350–400 57 4,2
widzialne 400–700 522 38,2
bliska podczerwień 700–1000 309 22,6
podczerwień powyżej 1000 417 30,5
stała słoneczna 1367 100,0
Promieniowanie nadfioletowe
Ultrafiolet
Ultrafiolet, nadfiolet, promieniowanie ultrafioletowe, promieniowanie nadfioletowe (skrót UV) – promieniowanie elektromagnetyczne o długości fali od 10 nm do 400 nm (niektóre źródła za ultrafiolet przyjmują zakres 100–400 nm), niewidzialne dla człowieka. Promieniowanie ultrafioletowe są to fale krótsze niż promieniowanie widzialne i dłuższe niż promieniowanie rentgenowskie. Zostało odkryte niezależnie przez niemieckiego fizyka, Johanna Wilhelma Rittera, i brytyjskiego chemika, Williama Hyde’a Wollastona, w 1801 roku
Słowo „ultrafiolet” utworzone jest z łacińskiego słowa ultra (ponad, poza, dalej, więcej) i wyrazu „fiolet”, oznaczającego barwę o najmniejszej długości fali w świetle widzialnym. Dawniej było nazywane promieniowaniem pozafiołkowym lub nadfiołkowym.
Ultrafiolet, nadfiolet, promieniowanie ultrafioletowe, promieniowanie nadfioletowe (skrót UV) – promieniowanie elektromagnetyczne o długości fali od 10 nm do 400 nm (niektóre źródła za ultrafiolet przyjmują zakres 100–400 nm), niewidzialne dla człowieka. Promieniowanie ultrafioletowe są to fale krótsze niż promieniowanie widzialne i dłuższe niż promieniowanie rentgenowskie. Zostało odkryte niezależnie przez niemieckiego fizyka, Johanna Wilhelma Rittera, i brytyjskiego chemika, Williama Hyde’a Wollastona, w 1801 roku
Słowo „ultrafiolet” utworzone jest z łacińskiego słowa ultra (ponad, poza, dalej, więcej) i wyrazu „fiolet”, oznaczającego barwę o najmniejszej długości fali w świetle widzialnym. Dawniej było nazywane promieniowaniem pozafiołkowym lub nadfiołkowym.
Wyjaśnienie
Promieniowanie UV-C
Promieniowanie UV-A
Promieniowanie UV-B
Promieniowanie UV-B powoduje wytwarzanie witaminy D3 w skórze, przeciwdziałając w ten sposób powstawaniu krzywicy. Aby proces ten mógł zachodzić, potrzebna jest pewna minimalna dawka UV-B. Promieniowanie w tym zakresie w zbyt dużej dawce może powodować rumień skóry, objawy alergiczne, a także nowotwory złośliwe skóry, w tym najbardziej agresywnego czerniaka oraz mniej agresywne guzy, na przykład raka podstawnokomórkowego skóry i raka płaskonabłonkowego
Promieniowanie UV-A jest mniej szkodliwe niż promieniowanie z pozostałych zakresów, ale uszkadza włókna kolagenowe w skórze, co przyspiesza procesy starzenia. Długoletnia ekspozycja na duże dawki promieniowania UV-A może powodować zaćmę (tzw. zaćma fotochemiczna), czyli zmętnienie soczewki. Nie dotyczy to promieniowania UV o innych częstotliwościach, ponieważ jest ono pochłaniane w całości przez rogówkę.
Promieniowanie UV-C, a także UV-B, może prowadzić do uszkodzenia łańcuchów DNA, w wyniku czego dochodzi do mutacji. W warunkach prawidłowych większość uszkodzeń DNA jest usuwana przez systemy naprawcze. Osoby obarczone wadami tych systemów naprawy bardzo często chorują na nowotwory skóry.
Astronomia
Z powodu zbyt silnego pochłaniania dalekiego ultrafioletu przez atmosferę ziemską obserwacje ciał niebieskich w tym zakresie nie mogły być prowadzone, aż do czasu wyniesienia przyrządów astronomicznych w kosmos. Dopiero wyniesienie ponad atmosferę teleskopów, w szczególności teleskopu Hubble’a, pozwoliło na obserwację ciał niebieskich emitujących ultrafiolet.
Zastosowanie
Zastosowanie
W lampie jarzeniowej ultrafiolet wytwarzany jest z użyciem rozprężonych par rtęci, przez które płynie prąd elektryczny. Luminofor pochłania to promieniowanie i emituje światło białe. Ultrafiolet powoduje fluorescencję wielu substancji chemicznych. To zjawisko można wykorzystać do analizy zabezpieczonych przed podrobieniem banknotów albo przy oględzinach miejsca zbrodni. Fluorescencyjne znaczniki mogą służyć do oznaczania badanych substancji organicznych, dzięki czemu można łatwo obserwować ich przemiany w organizmach żywych. Ponadto ultrafiolet typu C ma właściwości bakteriobójcze.
Promieniowanie ultrafioletowe pozwala na wykonanie w technice fotolitografii półprzewodnikowych układów scalonych. Dzięki temu można uzyskać rozdzielczość struktury procesorów rzędu długości fali promieniowania ultrafioletowego (w 2014 roku Intel wprowadził procesory wytwarzane w litografii 14 nm).
Promieniowanie gamma
Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie – w wyniku zderzeń elektronów z elektronami powłok wewnętrznych lub ich rozpraszaniu w polu jąder atomu. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym.
LOREM IPSUM DOLOR SIT AMET
Reakcja jądrowa – jądra atomowe izotopów promieniotwórczych po rozpadzie znajdują się w stanie wzbudzonym. Powrót do stanu podstawowego, o niższej energii, powoduje emisję fotonu gamma.
Nukleosynteza – dwa jądra atomowe zderzają się, tworząc nowe jądro w stanie wzbudzonym. Jego przejściu do stanu podstawowego może towarzyszyć emisja jednego lub wielu kwantów gamma.
Anihilacja – zderzenie cząstki i antycząstki, np. elektronu i pozytonu, powoduje zniknięcie obu tych cząstek i emisję co najmniej dwóch fotonów gamma.
Rozpady cząstek elementarnych – fotony gamma mogą być produktami rozpadu wielu nietrwałych cząstek elementarnych, np. neutralny pion rozpada się najczęściej na dwa fotony.
Promieniowanie hamowania i promieniowanie synchrotronowe – wysokoenergetyczne cząstki naładowane (najczęściej elektrony) poruszające się w silnym polu elektrycznym, np. jąder atomowych, lub polu magnetycznym mogą emitować fotony promieniowania gamma.
Odwrotne rozpraszanie Comptona – wysokoenergetyczne elektrony mogą zderzać się z niskoenergetycznymi fotonami (np. promieniowania tła) i przekazywać im energię, zmieniając je w kwanty gamma.
W wybuchu jądrowym
wewnętrzny efekt fotoelektryczny (Photo), w wyniku którego promieniowanie gamma oddaje energię elektronom, odrywając je od atomów lub przenosząc na wyższe poziomy energetyczne;
rozpraszanie komptonowskie (Compton) – elektrony słabo związane lub swobodne doznają przyspieszenia w kierunku rozchodzenia się promieniowania. W pojedynczym akcie oddziaływania następuje niewielka zmiana energii kwantu gamma. W wyniku oddziaływania z wieloma elektronami kwant gamma wytraca swą energię. Jest to najważniejszy sposób oddawania energii przez promieniowanie gamma;
reakcje fotojądrowe – w tym oddziaływaniu promieniowanie gamma oddaje energię jądrom atomowym, wzbudzając je i, przy odpowiednio wysokiej energii fotonu, produkując nowe cząstki. Wzbudzone jądro atomowe może wypromieniować kwant gamma, ulec rozpadowi lub rozszczepieniu. Przekrój czynny takiej reakcji jest zazwyczaj niewielki, może być jednak rezonansowo zwiększony jeżeli energia kwantu gamma odpowiada dokładnie energii wzbudzenia jądra.
kreacja par elektron-pozyton (Pair) – kwant gamma, uderzając o jądro atomowe, powoduje powstanie par cząstka-antycząstka (warunkiem zajścia zjawiska jest energia kwantu gamma > 1,02 MeV – dwukrotnej wartości energii spoczynkowej elektronu);
W wybuchu jądrowym
Podczas wybuchu jądrowego bomby atomowej część energii wybuchu zamienia się na promieniowanie jonizujące. Promieniowanie gamma emitowane w trakcie wybuchu określa się jako natychmiastowe promieniowanie gamma, a emitowane w okresie późniejszym z izotopów promieniotwórczych powstałych w trakcie wybuchu nosi nazwę opóźnionego promieniowania gamma. Natychmiastowe promieniowanie gamma generowane jest bezpośrednio podczas wybuchu, a także w wyniku oddziaływania innych typów promieniowania (np. promieniowania neutronowego) z materią. Podczas ataku atomowego na Hiroszimę ok. 5% osób zmarłych w ciągu 30 dni od wybuchu było ofiarami oddziaływania promieniowania gamma
Promieniowanie rentgenowskie
Promieniowanie rentgenowskie (promieniowanie rtg, promieniowanie X, promienie X, promieniowanie Roentgena) – rodzaj promieniowania elektromagnetycznego, które jest generowane podczas wyhamowywania elektronów[1]. Długość fali mieści się w zakresie od ok. 10 pm do 10 nm. W widmie fal elektromagnetycznych promieniowanie rentgenowskie znajduje się za nadfioletem, pokrywając się z zakresem promieniowania gamma.
Zastosowanie
Promieniowanie rentgenowskie jest wykorzystywane do uzyskiwania zdjęć rentgenowskich, które pozwalają m.in. na diagnostykę złamań kości i chorób płuc oraz do rentgenowskiej tomografii komputerowej. Wysokoenergetyczne promieniowanie rentgenowskie (rzędu MeV) stosowane jest jako wygodna alternatywa napromieniowania za pomocą radioizotopów (brak konieczności okresowej wymiany materiału promieniotwórczego) w radioterapii niektórych nowotworów. Promieniowanie takie generowane jest zwykle w wyniku bombardowania tarczy wolframowej (lub z dużym udziałem tego metalu) strumieniem elektronów pochodzących z akceleratorów liniowych. Do naświetleń powierzchownych nowotworów wykorzystuje się także niżej energetyczne promieniowanie rentgenowskie z zakresu 80–250 KeV
Źródła promieniowania
- Promieniowanie rentgenowskie uzyskuje się w praktyce (np. w lampie rentgenowskiej) poprzez wyhamowywanie rozpędzonych elektronów na materiale o dużej (powyżej 20) liczbie atomowej (promieniowanie hamowania), efektem czego jest powstanie promieniowania o charakterystyce ciągłej, na której widoczne są również piki pochodzące od promieniowania charakterystycznego anody (rozpędzone elektrony wybijają elektrony z atomów anody). Luki po wybitych elektronach na dolnych powłokach elektronowych pozostają puste do czasu, aż zapełnią je elektrony z wyższej powłoki. Elektron przechodząc z wyższego stanu emituje kwant promieniowania rentgenowskiego – następuje emisja charakterystycznego promieniowania X. Promieniowanie X powstaje także w wyniku wychwytu elektronu, tj. gdy jądro przechwytuje elektron znajdujący się na powłoce K, w wyniku czego powstaje wolne miejsce, na które spadają elektrony z wyższych powłok i następuje emisja kwantu X. Przykładem źródła promieniowania X działającego w oparciu o wychwyt elektronu jest 55Fe, emitujące 80% kwantów o energii ok. 5,9 keV (linia Kα) oraz 20% o energii 6,2 keV (linia Kβ)
- Firma Amptek wprowadziła na rynek miniaturowe urządzenie wytwarzające promieniowanie rentgenowskie pod nazwą Cool-X. Jest ono wielkości dużego tranzystora. Do zasilania wystarcza źródło prądu stałego w postaci baterii 9 V. Emituje przerywany strumień promieniowania X z kilkuminutowym okresem. Promieniowanie wytwarzane jest w oparciu o kryształ piroelektryczny. Zakres energii klasyfikuje go jako miękkie (75% promieniowania ma energię <10 keV). Przy bezpośrednim kontakcie ze źródłem dawka ekspozycyjna jest rzędu 5 R/h
KONIEC
Autor: Bartosz Pucułek
Źródła wiedzy
- https://pl.wikipedia.org/wiki/Promieniowanie_rentgenowskie
- https://pl.wikipedia.org/wiki/Ultrafiolet
- https://pl.wikipedia.org/wiki/Promieniowanie_gamma
- https://pl.wikipedia.org/wiki/Światło_widzialne
Fizyka - prezentacja - fale elektromagnetyczne
xDiablonet
Created on March 14, 2021
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Vaporwave presentation
View
Animated Sketch Presentation
View
Memories Presentation
View
Pechakucha Presentation
View
Decades Presentation
View
Color and Shapes Presentation
View
Historical Presentation
Explore all templates
Transcript
Prezentacja
FIZYKA - FALE
Indeks
Światło widzialne
Prom. nadfioletowe
Prom. gamma
Prom. rengenowskie
Światło widzialne
Światło widzialne – część promieniowania elektromagnetycznego, na którą reaguje siatkówka oka w procesie widzenia. Dla człowieka promieniowanie to zawiera się w przybliżeniu w zakresie długości fal 380–750 nm, dla zwierząt zakres ten bywa nieco odmienny (lecz o zbliżonych wartościach).
Wyjaśnienie
Energia promieniowania słonecznego (irradiancja) docierającego do powierzchni Ziemi zawiera się w większości między falami o długości 280–4000 nm i odpowiada dość dokładnie promieniowaniu ciała doskonale czarnego w temperaturze około 6000 K. W tabeli podany jest podział promieniowania słonecznego w różnych pasmach. Około połowy jego całkowitej energii znajduje się w świetle widzialnym i ultrafiolecie, a druga połowa znajduje się w bliskiej i średniej podczerwieni (700–4000 nm).
Pasmo Długość [nm] Irradiancja [W/m2] [%] ultrafiolet poniżej 350 62 4,5 bliski ultrafiolet 350–400 57 4,2 widzialne 400–700 522 38,2 bliska podczerwień 700–1000 309 22,6 podczerwień powyżej 1000 417 30,5 stała słoneczna 1367 100,0
Promieniowanie nadfioletowe
Ultrafiolet
Ultrafiolet, nadfiolet, promieniowanie ultrafioletowe, promieniowanie nadfioletowe (skrót UV) – promieniowanie elektromagnetyczne o długości fali od 10 nm do 400 nm (niektóre źródła za ultrafiolet przyjmują zakres 100–400 nm), niewidzialne dla człowieka. Promieniowanie ultrafioletowe są to fale krótsze niż promieniowanie widzialne i dłuższe niż promieniowanie rentgenowskie. Zostało odkryte niezależnie przez niemieckiego fizyka, Johanna Wilhelma Rittera, i brytyjskiego chemika, Williama Hyde’a Wollastona, w 1801 roku Słowo „ultrafiolet” utworzone jest z łacińskiego słowa ultra (ponad, poza, dalej, więcej) i wyrazu „fiolet”, oznaczającego barwę o najmniejszej długości fali w świetle widzialnym. Dawniej było nazywane promieniowaniem pozafiołkowym lub nadfiołkowym.
Ultrafiolet, nadfiolet, promieniowanie ultrafioletowe, promieniowanie nadfioletowe (skrót UV) – promieniowanie elektromagnetyczne o długości fali od 10 nm do 400 nm (niektóre źródła za ultrafiolet przyjmują zakres 100–400 nm), niewidzialne dla człowieka. Promieniowanie ultrafioletowe są to fale krótsze niż promieniowanie widzialne i dłuższe niż promieniowanie rentgenowskie. Zostało odkryte niezależnie przez niemieckiego fizyka, Johanna Wilhelma Rittera, i brytyjskiego chemika, Williama Hyde’a Wollastona, w 1801 roku Słowo „ultrafiolet” utworzone jest z łacińskiego słowa ultra (ponad, poza, dalej, więcej) i wyrazu „fiolet”, oznaczającego barwę o najmniejszej długości fali w świetle widzialnym. Dawniej było nazywane promieniowaniem pozafiołkowym lub nadfiołkowym.
Wyjaśnienie
Promieniowanie UV-C
Promieniowanie UV-A
Promieniowanie UV-B
Promieniowanie UV-B powoduje wytwarzanie witaminy D3 w skórze, przeciwdziałając w ten sposób powstawaniu krzywicy. Aby proces ten mógł zachodzić, potrzebna jest pewna minimalna dawka UV-B. Promieniowanie w tym zakresie w zbyt dużej dawce może powodować rumień skóry, objawy alergiczne, a także nowotwory złośliwe skóry, w tym najbardziej agresywnego czerniaka oraz mniej agresywne guzy, na przykład raka podstawnokomórkowego skóry i raka płaskonabłonkowego
Promieniowanie UV-A jest mniej szkodliwe niż promieniowanie z pozostałych zakresów, ale uszkadza włókna kolagenowe w skórze, co przyspiesza procesy starzenia. Długoletnia ekspozycja na duże dawki promieniowania UV-A może powodować zaćmę (tzw. zaćma fotochemiczna), czyli zmętnienie soczewki. Nie dotyczy to promieniowania UV o innych częstotliwościach, ponieważ jest ono pochłaniane w całości przez rogówkę.
Promieniowanie UV-C, a także UV-B, może prowadzić do uszkodzenia łańcuchów DNA, w wyniku czego dochodzi do mutacji. W warunkach prawidłowych większość uszkodzeń DNA jest usuwana przez systemy naprawcze. Osoby obarczone wadami tych systemów naprawy bardzo często chorują na nowotwory skóry.
Astronomia
Z powodu zbyt silnego pochłaniania dalekiego ultrafioletu przez atmosferę ziemską obserwacje ciał niebieskich w tym zakresie nie mogły być prowadzone, aż do czasu wyniesienia przyrządów astronomicznych w kosmos. Dopiero wyniesienie ponad atmosferę teleskopów, w szczególności teleskopu Hubble’a, pozwoliło na obserwację ciał niebieskich emitujących ultrafiolet.
Zastosowanie
Zastosowanie
W lampie jarzeniowej ultrafiolet wytwarzany jest z użyciem rozprężonych par rtęci, przez które płynie prąd elektryczny. Luminofor pochłania to promieniowanie i emituje światło białe. Ultrafiolet powoduje fluorescencję wielu substancji chemicznych. To zjawisko można wykorzystać do analizy zabezpieczonych przed podrobieniem banknotów albo przy oględzinach miejsca zbrodni. Fluorescencyjne znaczniki mogą służyć do oznaczania badanych substancji organicznych, dzięki czemu można łatwo obserwować ich przemiany w organizmach żywych. Ponadto ultrafiolet typu C ma właściwości bakteriobójcze.
Promieniowanie ultrafioletowe pozwala na wykonanie w technice fotolitografii półprzewodnikowych układów scalonych. Dzięki temu można uzyskać rozdzielczość struktury procesorów rzędu długości fali promieniowania ultrafioletowego (w 2014 roku Intel wprowadził procesory wytwarzane w litografii 14 nm).
Promieniowanie gamma
Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie – w wyniku zderzeń elektronów z elektronami powłok wewnętrznych lub ich rozpraszaniu w polu jąder atomu. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym.
LOREM IPSUM DOLOR SIT AMET
Reakcja jądrowa – jądra atomowe izotopów promieniotwórczych po rozpadzie znajdują się w stanie wzbudzonym. Powrót do stanu podstawowego, o niższej energii, powoduje emisję fotonu gamma. Nukleosynteza – dwa jądra atomowe zderzają się, tworząc nowe jądro w stanie wzbudzonym. Jego przejściu do stanu podstawowego może towarzyszyć emisja jednego lub wielu kwantów gamma. Anihilacja – zderzenie cząstki i antycząstki, np. elektronu i pozytonu, powoduje zniknięcie obu tych cząstek i emisję co najmniej dwóch fotonów gamma. Rozpady cząstek elementarnych – fotony gamma mogą być produktami rozpadu wielu nietrwałych cząstek elementarnych, np. neutralny pion rozpada się najczęściej na dwa fotony. Promieniowanie hamowania i promieniowanie synchrotronowe – wysokoenergetyczne cząstki naładowane (najczęściej elektrony) poruszające się w silnym polu elektrycznym, np. jąder atomowych, lub polu magnetycznym mogą emitować fotony promieniowania gamma. Odwrotne rozpraszanie Comptona – wysokoenergetyczne elektrony mogą zderzać się z niskoenergetycznymi fotonami (np. promieniowania tła) i przekazywać im energię, zmieniając je w kwanty gamma.
W wybuchu jądrowym
wewnętrzny efekt fotoelektryczny (Photo), w wyniku którego promieniowanie gamma oddaje energię elektronom, odrywając je od atomów lub przenosząc na wyższe poziomy energetyczne;
rozpraszanie komptonowskie (Compton) – elektrony słabo związane lub swobodne doznają przyspieszenia w kierunku rozchodzenia się promieniowania. W pojedynczym akcie oddziaływania następuje niewielka zmiana energii kwantu gamma. W wyniku oddziaływania z wieloma elektronami kwant gamma wytraca swą energię. Jest to najważniejszy sposób oddawania energii przez promieniowanie gamma;
reakcje fotojądrowe – w tym oddziaływaniu promieniowanie gamma oddaje energię jądrom atomowym, wzbudzając je i, przy odpowiednio wysokiej energii fotonu, produkując nowe cząstki. Wzbudzone jądro atomowe może wypromieniować kwant gamma, ulec rozpadowi lub rozszczepieniu. Przekrój czynny takiej reakcji jest zazwyczaj niewielki, może być jednak rezonansowo zwiększony jeżeli energia kwantu gamma odpowiada dokładnie energii wzbudzenia jądra.
kreacja par elektron-pozyton (Pair) – kwant gamma, uderzając o jądro atomowe, powoduje powstanie par cząstka-antycząstka (warunkiem zajścia zjawiska jest energia kwantu gamma > 1,02 MeV – dwukrotnej wartości energii spoczynkowej elektronu);
W wybuchu jądrowym
Podczas wybuchu jądrowego bomby atomowej część energii wybuchu zamienia się na promieniowanie jonizujące. Promieniowanie gamma emitowane w trakcie wybuchu określa się jako natychmiastowe promieniowanie gamma, a emitowane w okresie późniejszym z izotopów promieniotwórczych powstałych w trakcie wybuchu nosi nazwę opóźnionego promieniowania gamma. Natychmiastowe promieniowanie gamma generowane jest bezpośrednio podczas wybuchu, a także w wyniku oddziaływania innych typów promieniowania (np. promieniowania neutronowego) z materią. Podczas ataku atomowego na Hiroszimę ok. 5% osób zmarłych w ciągu 30 dni od wybuchu było ofiarami oddziaływania promieniowania gamma
Promieniowanie rentgenowskie
Promieniowanie rentgenowskie (promieniowanie rtg, promieniowanie X, promienie X, promieniowanie Roentgena) – rodzaj promieniowania elektromagnetycznego, które jest generowane podczas wyhamowywania elektronów[1]. Długość fali mieści się w zakresie od ok. 10 pm do 10 nm. W widmie fal elektromagnetycznych promieniowanie rentgenowskie znajduje się za nadfioletem, pokrywając się z zakresem promieniowania gamma.
Zastosowanie
Promieniowanie rentgenowskie jest wykorzystywane do uzyskiwania zdjęć rentgenowskich, które pozwalają m.in. na diagnostykę złamań kości i chorób płuc oraz do rentgenowskiej tomografii komputerowej. Wysokoenergetyczne promieniowanie rentgenowskie (rzędu MeV) stosowane jest jako wygodna alternatywa napromieniowania za pomocą radioizotopów (brak konieczności okresowej wymiany materiału promieniotwórczego) w radioterapii niektórych nowotworów. Promieniowanie takie generowane jest zwykle w wyniku bombardowania tarczy wolframowej (lub z dużym udziałem tego metalu) strumieniem elektronów pochodzących z akceleratorów liniowych. Do naświetleń powierzchownych nowotworów wykorzystuje się także niżej energetyczne promieniowanie rentgenowskie z zakresu 80–250 KeV
Źródła promieniowania
KONIEC
Autor: Bartosz Pucułek
Źródła wiedzy