Numarul π (pi)
Hariton Maxim Clasa 7G5
Ziua lui π
Write a subtitle here
Ziua numărului Pi este serbată anual pe data de 14 martie, deoarece 3/14 este formatul lună/zi, iar 3, 1 și 4 sunt primele trei cifre importante ale lui Pi.
Informație despre π
Write a subtitle here
π este un număr irațional, adică valoarea sa nu poate fi exprimată exact sub formă de fracție m/n, cu m și n întregi. De aceea, reprezentarea sa zecimală nu are sfârșit și nu începe nici să se repete. Numărul este și transcendent, ceea ce înseamnă, printre altele, că nu există un șir finit de operații algebrice cu numere întregi (puteri, extrageri de radicali, sume etc.) al căror rezultat să fie egal cu valoarea lui; demonstrarea acestui fapt a fost o realizare relativ recentă în istoria matematicii și un rezultat semnificativ al matematicienilor germani ai secolului al XIX-lea. De-a lungul istoriei matematicii s-au depus eforturi semnificative de a determina π cu mai multă precizie și de a-i înțelege natura; fascinația acestui număr a intrat și în cultura nematematică.Litera grecească π, scrisă pi în alfabetul latin, a fost adoptată de la cuvântul grecesc „περίμετρος”, perimetros (în română: perimetru), mai întâi de William Jones în 1707; notația a fost popularizată apoi de Leonhard Euler în 1737.
Mulțumim de atenție!
Numărul pi
haryton.maxim
Created on March 8, 2021
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Smart Presentation
View
Practical Presentation
View
Essential Presentation
View
Akihabara Presentation
View
Pastel Color Presentation
View
Visual Presentation
View
Relaxing Presentation
Explore all templates
Transcript
Numarul π (pi)
Hariton Maxim Clasa 7G5
Ziua lui π
Write a subtitle here
Ziua numărului Pi este serbată anual pe data de 14 martie, deoarece 3/14 este formatul lună/zi, iar 3, 1 și 4 sunt primele trei cifre importante ale lui Pi.
Informație despre π
Write a subtitle here
π este un număr irațional, adică valoarea sa nu poate fi exprimată exact sub formă de fracție m/n, cu m și n întregi. De aceea, reprezentarea sa zecimală nu are sfârșit și nu începe nici să se repete. Numărul este și transcendent, ceea ce înseamnă, printre altele, că nu există un șir finit de operații algebrice cu numere întregi (puteri, extrageri de radicali, sume etc.) al căror rezultat să fie egal cu valoarea lui; demonstrarea acestui fapt a fost o realizare relativ recentă în istoria matematicii și un rezultat semnificativ al matematicienilor germani ai secolului al XIX-lea. De-a lungul istoriei matematicii s-au depus eforturi semnificative de a determina π cu mai multă precizie și de a-i înțelege natura; fascinația acestui număr a intrat și în cultura nematematică.Litera grecească π, scrisă pi în alfabetul latin, a fost adoptată de la cuvântul grecesc „περίμετρος”, perimetros (în română: perimetru), mai întâi de William Jones în 1707; notația a fost popularizată apoi de Leonhard Euler în 1737.
Mulțumim de atenție!