Want to create interactive content? It’s easy in Genially!

Get started free

BASIC GEOMETRIC CONSTRUCTIONS

Alicia Suárez López

Created on October 16, 2020

Start designing with a free template

Discover more than 1500 professional designs like these:

Vaporwave presentation

Animated Sketch Presentation

Memories Presentation

Pechakucha Presentation

Decades Presentation

Color and Shapes Presentation

Historical Presentation

Transcript

BASIC GEOMETRIC CONSTRUCTIONS

Geometric Constructions Compass "Construction" in Geometry means to draw shapes, angles or lines accurately. These constructions use only compass, straightedge (i.e. ruler) and a pencil. This is the "pure" form of geometric construction: no numbers involved!

Click the link below

SET SQUARE INTRODUCTION 30/60/90 &45 DEGREES

VíDEO

SET SQUARES.

SET SQUARES (tools) a thin flat piece of plastic, metal, etc, in the shape of a right-angled triangle, used in technical drawing.

RIGHT ISOSCELES TRIANGLE

RIGHT SCALENE TRIANGLE

SET SQUARES.

SET SQUARES are used to draw angles of 90º, 45º, 30º, 60º or a combination of these angles.

RIGHT ISOSCELES TRIANGLE

RIGHT SCALENE TRIANGLE

Drawing parallel and perpendicular lines.

PARALLEL LINES Look at where the 45º and 60º/30º set squares are positioned in the picture on the left. This position enables us to draw parallel lines. The 60º/30º set square stays in the same place, whilst the 45º set square slides down the page to draw lines at different horizontal positions. These lines are therefore parallel.

Drawing parallel and perpendicular lines.

PERPENDICULAR LINES To draw perpendicular lines, you simply have to rotate the 45º set square, as shown in the picture on the right. Meanwhile, the 60º/30º set square stays in its original position. When you move the 45º set square, you can draw lines that are parallel to one another and perpendicular to the original lines.

VíDEO

HOW TO DRAW PARALLEL AND PERPENDICULAR LINES USING SET SQUARES.

Construction of angle- Using Set Squares

VíDEO

SET SQUARES.

VíDEO

CONSTRUCTION OF ANGLE-USING SET SQUARES

PIET MONDRIAN

VíDEO

VíDEO

Deconstructing Mondrian: The story behind an iconic design.

Artist Piet Mondrian is known today for his patterns of black lines and bold, primary colors. But he started out painting classic Dutch landscapes. An exhibit at the Gemeentemuseum in The Hague traces the artist's path to abstraction.

VíDEO

Can you solve the MONDRIAN squares riddle?

VíDEO

Piet Mondrian's Artistic Evolution.

BASIC GEOMETRIC CONSTRUCTIONS

LINE SEGMENT - Copy a line segment - Add line segments - Substract line segments - Line segment bisector and right angle.

CIRCUMFERENCE, CIRCLE AND ARC

SECTION

ANGLES - Same (congruent angle) -Add angles -Substract angles - Angle bisector

THALES THEOREM -Cut a line segment into n equal segments.

CONSTRUCTIONES GEOMÉTRICAS BÁSICAS

SEGMENTO - Copia un segmento dado - Suma de segmentos - Resta de segmentos - Mediatriz.

CIRCUNFERENCIA, CÍRCULO Y ARCO.

SECTION

ÁNGULOS - Copia de ángulos -Suma de ángulos -Resta de ángulos - Bisectriz

TEOREMA DE THALES. - División de un segmento en partes iguales

CLICK AND WATCH THIS VIDEO

SEGMENTO

LINE SEGMENT

The part of a line that connects two points.It is the shortest distance between the two points.

Es la parte de línea que une dos puntos.Es la distancia más corta entre dos puntos.

Extremos del segmento

SECTION

SEGMENTO

LINE SEGMENT

The part of a line that connects two points.It is the shortest distance between the two points.

Es la parte de línea que une dos puntos.Es la distancia más corta entre dos puntos.

Extremos del segmento

SECTION

  • COPY A LINE SEGMENT
  • ADD LINE SEGMENTS.
  • SUBSTRACT LINE SEGMENTS.
  • LINE SEGMENT BISECTOR AND RIGHT ANGLES.
  • COPY A LINE SEGMENT
  • Copia un segmento
  • ADD LINE SEGMENTS.
  • Suma de segmentos.
  • SUBSTRACT LINE SEGMENTS.
  • Resta de segmentos.
  • LINE SEGMENT BISECTOR AND RIGHT ANGLES.
  • Mediatriz y ángulos rectos
  • SAME (CONGRUENT ANGLE)
  • ADD ANGLES
  • SUBSTRACT ANGLES
  • ANGLE BISECTOR
  • SAME (CONGRUENT ANGLE)
  • Mismo ángulo
  • ADD ANGLES
  • Suma de ángulos
  • SUBSTRACT ANGLES
  • Resta de ángulos
  • ANGLE BISECTOR
  • Bisectriz

ANGLES

  • Acute Angle is less than 90°
  • Right Angle is 90° exactly
  • Obtuse Angle is greater than 90° but less than 180°
  • Straight Angle is 180° exactly
  • Reflex Angle is greater than 180°
  • Full Rotation is 360° exactly3

ANGLES

agudo

cóncavo

recto

obtuso

llano

completo

  • Ángulo agudo, menor de 90°
  • Ángulo recto, 90°
  • Ángulo obtuso, es mayor de 90º pero menor de 180º.
  • Ángulo llano, 180º
  • Ángulo cóncavo, mayor de 180°
  • Ángulo completo, 360°

ANGLES

ACTIVITY: ANGLES: ACUTE, OBTUSE...

ANGLES

ACTIVITY

ANGLES

Complete the table by filling in the size of each angle described.

ACTIVITY

ANGLES. Using the protractor

ANGLES. How to use a protractor to measure an angle.

ANGLES. How to use a protractor to measure an angle.

ANGLES. How to use a protractor to measure an angle.

ANGLES. How to use a protractor to measure an angle.

COMPLEMENTARY ANGLES

QUIZ

SUPLEMENTARY ANGLES

QUIZ

ACTIVITY CLOCKS AND ANGLES

SECTION

What is the angle between the hands of a clock at 1 o'clock?

¿Qué ángulo forman las manillas de un reloj a la una?

ACTIVITY CLOCKS AND ANGLES

SECTION

What is the angle between the hands of a clock at 1 o'clock?

360° ÷ 12 = 30° So the angle between the hands of a clock at 1 o'clock is 30° .

360° ÷ 12 = 30°, por tanto, el ángulo entre las manillas del reloj a la una es de 30° .

ACTIVITY CLOCKS AND ANGLES

SECTION

What is the angle between the hands of a clock at 2:30?

Cuál es el ángulo entre las manillas de un reloj a las 2:30?

ACTIVITY CLOCKS AND ANGLES

  • The angle between the 5 and the 6 is 30°
  • The angle between the 4 and the 5 is 30°
  • The angle between the 3 and the 4 is 30°
  • The remaining angle is ½ × 30° = 15°
So the angle between the hands of a clock at 2:30 = 30° + 30° + 30° + 15° = 105°

SECTION

What is the angle between the hands of a clock at 2:30?

  • El ángulo entre las 5 y las 6 es de 30º
  • El ángulo entre las 4 y las 5 es de 30º
  • El ángulo entre las 3 y las 4 es de 30º
  • El ángulo restante es la mitad de 30º (15º)
  • Por tanto, el ángulo entre las manillas del reloj a las 2:30 = 30º+30º+30º+15º=105º

CIRCUNFERENCIA Y CÍRCULO

CIRCUMFERENCE CIRCLE

SECTION

CIRCLE is the name of a two-dimensional shape and a one-dimensional curve.CIRCUMFERENCE is the perimeter of the circle. In other words it is the length of the boundary of circle. The shape has a certain property that any point lying on the shape is always at a constant distance from a point called centre.

El CÍRCULO es una figura plana formada por una circunferencia y su interior. La CIRCUNFERENCIA es una línea curva, cerrada y plana cuyos puntos están a la misma distancia del centro.

CLICK AND WATCH THIS VIDEO

PARTES DE LA CIRCUNFERENCIA

PARTS OF THE CIRCLE

Tangente

Secante

Cuerda

SECTION

Diámetro

Radio

Arco

A line that "just touches" the circle as it passes by is called a TANGENT. A line that cuts the circle at two points is called a SECANT. A line segment that goes from one point to another on the circle's circumference is called a CHORD. If it passes through the center it is called a DIAMETER. The RADIUS of a circle is the length of the line from the center to any point on its edge.A part of the circumference is called an ARC.

Tangente: recta que solo tiene un punto en común con la circunferencia.Secante: recta que corta a la circunferencia en dos puntos. Cuerda: segmento que une dos puntos de la circunferencia. Diámetro: recta que une dos puntos de la circunferencia pasando por el centro. Arco es cada parte en que una cuerda divide a una circunferencia.

RELATIVE POSITION OF TWO CIRCLES

SECTION

POSICIONES RELATIVAS DE DOS CIRCUNFERENCIAS

SECTION

USING THE COMPASS

CONSTRUCTING CIRCLES WITH A COMPASS

CONSTRUCTING CIRCLES WITH A COMPASS

CIRCLES ON CIRCLES

CIRCLES ON CIRCLES

USING CIRCLES TO DRAW OTHER FIGURES

FAMILIAR FIGURES IN THE SEVEN-CIRCLE PATTERN

FAMILIAR FIGURES IN THE SEVEN-CIRCLE PATTERN

Dividing a segment into several equal parts

We use Thales theorem to divide a given line segment into a number of equal parts with compass and straightedge or ruler. By using a compass and straightedge construction, we do this without measuring the line.