Want to create interactive content? It’s easy in Genially!

Get started free

capitulo 2 cisco 3

forever-soldier

Created on March 15, 2017

Start designing with a free template

Discover more than 1500 professional designs like these:

Transcript

REDUNDANCIA DE LAN

2.1.1.1 Redundancia en las capas 1 y 2 del modelo OSIEl diseño de red jerárquico de tres niveles, que utiliza las capas de núcleo, de distribución y de acceso con redundancia, intenta eliminar un único punto de falla en la red. Varias rutas conectadas por cables entre switches proporcionan redundancia física en una red conmutada. Esto mejora la confiabilidad y la disponibilidad de la red. Tener rutas físicas alternativas para que los datos atraviesen la red permite que los usuarios accedan a los recursos de red, a pesar de las interrupciones de la ruta

2.1.1.2 Problemas con la redundancia de capa 1: inestabilidad de la base de datos MAC Doble clic para editarme

Inestabilidad de la base de datos MACLas tramas de Ethernet no poseen un atributo de tiempo de vida (TTL) como los paquetes IP. Como resultado, si no hay un mecanismo habilitado para bloquear la propagación continua de estas tramas en una red conmutada, continúan propagándose entre los switches incesantemente, o hasta que un enlace se interrumpa y rompa el bucle. Esta propagación continua entre switches puede provocar la inestabilidad de la base de datos MAC. Esto puede ocurrir a causa del reenvío de tramas de difusión.

1.1.1.3 Problemas con la redundancia de capa 1: tormentas de difusión

Tormenta de difusiónUna tormenta de difusión se produce cuando existen tantas tramas de difusión atrapadas en un bucle de Capa 2, que se consume todo el ancho de banda disponible. Como consecuencia, no hay ancho de banda disponible para el tráfico legítimo y la red deja de estar disponible para la comunicación de datos. Esto es una denegación de servicio eficaz.La tormenta de difusión es inevitable en una red con bucles. A medida que más dispositivos envían difusiones a través de la red, más tráfico se concentra en el bucle, lo que consume recursos. Finalmente, se crea una tormenta de difusión que hace fallar la red.

2.1.1.4 Problemas con la redundancia de capa 1: tramas de unidifusión duplicadas

Transmisiones de múltiples tramasLas tramas de difusión no son el único tipo de tramas que son afectadas por los bucles. Las tramas de unicast enviadas a una red con bucles pueden generar tramas duplicadas que llegan al dispositivo de destino.Haga clic en el botón Reproducir de la ilustración para ver una animación de este problema. Cuando se detenga la animación, lea el texto a la derecha de la topología. La animación continuará después de una pausa breve.

2.1.2.1 Algoritmo de árbol de expansión: introducción

La redundancia aumenta la disponibilidad de la topología de red al proteger la red de un único punto de falla, como un cable de red o switch que fallan. Cuando se introduce la redundancia física en un diseño, se producen bucles y se duplican las tramas. Esto trae consecuencias graves para las redes conmutadas. El protocolo de árbol de expansión (STP) fue desarrollado para enfrentar estos inconvenientes.STP asegura que exista sólo una ruta lógica entre todos los destinos de la red, al realizar un bloqueo de forma intencional a aquellas rutas redundantes que puedan ocasionar un bucle. Se considera que un puerto está bloqueado cuando no se permite que entren o salgan datos de usuario por ese puerto. Esto no incluye las tramas de unidad de datos de protocolo puente (BPDU) utilizadas por STP para evitar bucles.

2.1.2.2 Algoritmo de árbol de expansión: funciones de puerto

La versión IEEE 802.1D de STP utiliza el algoritmo de árbol de expansión (STA) para determinar qué puertos de switch de una red se deben colocar en estado de bloqueo y evitar que ocurran bucles. El STA designa un único switch como puente raíz y lo utiliza como punto de referencia para todos los cálculos de rutas. En la ilustración, el puente raíz (el switch S1) se elige mediante un proceso de elección. Todos los switches que comparten STP intercambian tramas de BPDU para determinar el switch que posee el menor ID de puente (BID) en la red. El switch con el menor BID se transforma en el puente raíz en forma automática según los cálculos del STA.

2.1.2.3 Algoritmo de árbol de expansión: puente raíz

Como se muestra en la figura 1, todas las instancias de árbol de expansión (LAN conmutada o dominio de difusión) tienen un switch designado como puente raíz. El puente raíz sirve como punto de referencia para todos los cálculos de árbol de expansión para determinar las rutas redundantes que deben bloquearse.Un proceso de elección determina el switch que se transforma en el puente raíz.

2.1.2.4 Algoritmo de árbol de expansión: costo de la ruta

Una vez que se eligió el puente raíz para la instancia de árbol de expansión, el STA comienza el proceso para determinar las mejores rutas hacia el puente raíz desde todos los destinos en el dominio de difusión. La información de ruta se determina mediante la suma de los costos individuales de los puertos que atraviesa la ruta desde el destino al puente raíz. Cada “destino” es, en realidad, un puerto de switch.Los costos de los puertos predeterminados se definen por la velocidad a la que funcionan los mismos. Como se muestra en la figura 1, el costo de puerto de los puertos Ethernet de 10 Gb/s es 2, el de los puertos Ethernet de 1 Gb/s es 4, el de los puertos Ethernet de 100 Mb/s es 19 y el de los puertos Ethernet de 10 Mb/s es 100

2.1.2.5 Formato de trama BPDU 802.1D

El algoritmo de árbol de expansión depende del intercambio de BPDU para determinar un puente raíz. Una trama BPDU contiene 12 campos distintos que transmiten información de ruta y de prioridad que se utiliza para determinar el puente raíz y las rutas a este.Haga clic en los campos de BPDU en la figura 1 para obtener más detalles. Los primeros cuatro campos identifican el protocolo, la versión, el tipo de mensaje y los señaladores de estado. Los cuatro campos siguientes se utilizan para identificar el puente raíz y el costo de la ruta hacia éste.

2.1.2.6 Propagación y proceso de BPDU

En principio, cada switch en el dominio de difusión supone que es el puente raíz para una instancia de árbol de expansión, por lo que las tramas BPDU que se envían contienen el BID del switch local como ID de raíz. De manera predeterminada, las tramas BPDU se envían cada dos segundos después de que arranca el switch; es decir, el valor predeterminado del temporizador de saludo especificado en la trama BPDU es dos segundos. Cada switch mantiene información local acerca de su propio BID, el ID de raíz y el costo de la ruta hacia la raíz.

2.1.2.7 ID de sistema extendido

El ID de puente (BID) se utiliza para determinar el puente raíz de una red. El campo BID de una trama de BPDU contiene tres campos separados: Prioridad del puente ID de sistema extendido Dirección MACCada campo se utiliza durante la elección del puente raíz.

2.2.1.1 Lista de protocolos de árbol de expansión

Las variedades de protocolos de árbol de expansión incluyen lo siguiente: STP: es la versión original de IEEE 802.1D (802.1D-1998 y anterior), que proporciona una topología sin bucles en una red con enlaces redundantes. El árbol de expansión común (CTS) asume una instancia de árbol de expansión para toda la red enlazada, independientemente de la cantidad de VLAN. PVST+: esta es una mejora de Cisco de STP que proporciona una instancia de árbol de expansión 802.1D para cada VLAN configurada en la red. La instancia aparte admite PortFast, UplinkFast, BackboneFast, la protección BPDU, el filtro BPDU, la protección de raíz y la protección de bucle. 802.1D-2004: esta es una versión actualizada del estándar STP que incorpora IEEE 802.1w. Protocolo de árbol de expansión rápido (RSTP) o IEEE 802.1w: esta es una evolución de STP que proporciona una convergencia más veloz que STP.

2.2.1.2 Características de los protocolos de árbol de expansión

implementación del estándar IEEE. STP: asume una instancia de árbol de expansión IEEE 802.1D para toda la red enlazada, independientemente de la cantidad de VLAN. Debido a que solo hay una instancia, los requisitos de CPU y de memoria para esta versión son menos que para el resto de los protocolos. Sin embargo, dado que solo hay una instancia, también hay solo un puente raíz y un árbol. El tráfico para todas las VLAN fluye por la misma ruta, lo que puede provocar flujos de tráfico poco óptimos. Debido a las limitaciones de 802.1D, la convergencia de esta versión es lenta. PVST+: es una mejora de Cisco de STP que proporciona una instancia diferente de la implementación de Cisco de 802.1D para cada VLAN que se configura en la red. La instancia aparte admite PortFast, UplinkFast, BackboneFast, la protección BPDU, el filtro BPDU, la protección de raíz y la protección de bucle. La creación de una instancia para cada VLAN aumenta los requisitos de CPU y de memoria, pero admite los puentes raíz por VLAN. Este diseño permite la optimización del árbol de expansión para el tráfico de cada VLAN. La convergencia de esta versión es similar a la convergencia de 802.1D. Sin embargo, la convergencia es por VLAN.

2.2.2.1 Descripción general de PVST+

El estándar IEEE 802.1D original define un árbol de expansión común (CST) que asume solo una instancia de árbol de expansión para toda la red conmutada, independientemente de la cantidad de VLAN. Las redes que ejecutan CST presentan las siguientes características: No es posible compartir la carga. Un uplink debe bloquear todas las VLAN. Se preserva la CPU. Solo se debe calcular una instancia de árbol de expansión.Cisco desarrolló PVST+ para que una red pueda ejecutar una instancia independiente de la implementación de Cisco de IEEE 802.1D para cada VLAN en la red. Con PVST+, un puerto de enlace troncal en un switch puede bloquear una VLAN sin bloquear otras. PVST+ se puede utilizar para implementar el balanceo de carga de capa 2. Debido a que cada VLAN ejecuta una instancia de STP distinta, los switches en un entorno PVST+ requieren un mayor procesamiento de CPU y un mayor consumo de ancho de banda de BPDU que la implementación de CST tradicional de STP.

2.2.2.2 Estados de los puertos y funcionamiento de PVST+

STP facilita la ruta lógica sin bucles en todo el dominio de difusión. El árbol de expansión se determina a través de la información obtenida en el intercambio de tramas de BPDU entre los switches interconectados. Para facilitar el aprendizaje del árbol de expansión lógico, cada puerto de switch sufre una transición a través de cinco estados posibles y tres temporizadores de BPDU.El árbol de expansión queda determinado inmediatamente después de que el switch finaliza el proceso de arranque. Si un puerto de switch pasa directamente del estado de bloqueo al de reenvío sin información acerca de la topología completa durante la transición, el puerto puede crear un bucle de datos temporal. Por este motivo, STP introduce los cinco estados de puerto. En la ilustración, se describen los siguientes estados de puerto que aseguran que no se produzcan bucles durante la creación del árbol de expansión lógico

2.2.3.1 Descripción general de PVST+ rápido

RSTP (IEEE 802.1w) es una evolución del estándar 802.1D original y se incorpora al estándar IEEE 802.1D-2004. La terminología de STP 802.1w sigue siendo fundamentalmente la misma que la de STP IEEE 802.1D original. La mayoría de los parámetros no se modificaron, de modo que los usuarios familiarizados con STP pueden configurar el nuevo protocolo con facilidad. PVST+ rápido es, simplemente, la implementación de Cisco de RSTP por VLAN. Con PVST+ rápido, se ejecuta una instancia de RSTP independiente para cada VLAN.En la ilustración, se muestra una red que ejecuta RSTP. El S1 es el puente raíz con dos puertos designados en estado de reenvío. RSTP admite un nuevo tipo de puerto: el puerto F0/3 en el S2 es un puerto alternativo en estado de descarte. Observe que no existen puertos bloqueados. RSTP no posee el estado de puerto de bloqueo. RSTP define los estados de puertos como de descarte, aprender o enviar.

2.2.3.2 BPDU en RSTP

RSTP utiliza BPDU tipo 2, versión 2. El protocolo STP 802.1D original utiliza BPDU tipo 0, versión 0. Sin embargo, los switches que ejecutan RSTP se pueden comunicar directamente con los switches que ejecutan el protocolo STP 802.1D original. RSTP envía BPDU y completa el byte del indicador de una forma ligeramente diferente a la del estándar 802.1D original: La información de protocolo se puede vencer de inmediato en un puerto si no se reciben los paquetes de saludo durante tres tiempos de saludo consecutivos (seis segundos de manera predeterminada) o si caduca el temporizador de antigüedad máxima. Debido a que las BPDU se utilizan como un mecanismo de actividad, tres BPDU perdidas en forma consecutiva indican la pérdida de la conectividad entre un puente y su raíz vecina o puente designado. La rápida expiración de la información permite que las fallas se detecten muy rápidamente.

2.2.2.3 ID de sistema extendido y funcionamiento de PVST+

En un entorno PVST+, la ID de switch extendido asegura que el switch tenga un BID exclusivo para cada VLAN.Por ejemplo, el BID predeterminado de la VLAN 2 sería 32770 (32768 de prioridad, más 2 de ID de sistema extendido). Si no se configuró ninguna prioridad, todos los switches tienen la misma prioridad predeterminada, y la elección de la raíz para cada VLAN se basa en la dirección MAC. Este método es un medio aleatorio para seleccionar el puente raíz.Hay situaciones en las que es posible que el administrador desee seleccionar un switch específico como puente raíz. Esto se puede deber a varios motivos, incluso que el switch esté ubicado en un lugar más central en el diseño de la LAN, que tenga una mayor capacidad de procesamiento o que simplemente sea más fácil acceder a este y administrarlo de forma remota. Para manipular la elección del puente raíz, asigne una prioridad más baja al switch que se debe seleccionar como puente raíz

2.2.3.3 Puertos de extremo

Un puerto de extremo en RSTP es un puerto de switch que nunca se conecta con otro dispositivo de switch. Sufre la transición al estado de enviar de manera inmediata cuando se encuentra habilitado.El concepto de puerto de perímetro RSTP corresponde a la característica PortFast de PVST+; un puerto de perímetro se conecta directamente a una estación terminal y supone que no hay ningún dispositivo switch conectado a ella. Los puertos de perímetro RSTP deben pasar de inmediato al estado de reenvío, por lo que se omiten los prolongados estados de puerto de escucha y aprendizaje del estándar 802.1D original.La implementación de Cisco de RSTP, PVST+ rápido, conserva la palabra clave PortFast mediante el comando spanning-tree portfast para la configuración de puertos de perímetro. Esto hace que la transición de STP a RSTP se dé sin inconvenientes.

2.2.3.4 Tipos de enlace

Mediante el uso del modo dúplex en el puerto, el tipo de enlace proporciona una categorización para cada puerto que participa en RSTP. Según lo que se conecta a cada puerto, se pueden identificar dos tipos diferentes de enlace: Punto a punto: un puerto que funciona en modo full-duplex generalmente conecta un switch a otro y es candidato para la transición rápida al estado de reenvío. Compartido: un puerto que funciona en modo half-duplex conecta un switch a un hub que conecta varios dispositivos.

2.3.1.2 Configuración y verificación de la ID de puente

Cuando un administrador desea seleccionar un switch específico como puente raíz, se debe ajustar el valor de prioridad del puente para asegurarse de que sea inferior a los valores de prioridad del puente del resto de los switches en la red. Existen dos métodos diferentes para configurar el valor de prioridad del puente en un switch Cisco Catalyst.Método 1Para asegurar que un switch tenga el valor de prioridad de puente más bajo, utilice el comando spanning-tree vlan id-vlan root primary en el modo de configuración global. La prioridad para el switch está establecida en el valor predefinido 24576 o en el múltiplo más alto de 4096, menos que la prioridad del puente más baja detectada en la red.Si se desea otro puente raíz, utilice el comando spanning-tree vlan id-vlan root secondary del modo de configuración global. Este comando establece la prioridad para el switch en el valor predeterminado 28672. Esto asegura que el switch alternativo se convierta en el puente raíz si falla el puente raíz principal. Se supone que el resto de los switches en la red tienen definido el valor de prioridad predeterminado 32768.En la figura 1, el S1 se asignó como puente raíz principal mediante el comando spanning-tree vlan 1 root primary, y el S2 se configuró como puente raíz secundario mediante el comando spanning-tree vlan 1 root secondary

2.3.1.3 PortFast y protección BPDU

PortFast es una característica de Cisco para los entornos PVST+. Cuando un puerto de switch se configura con PortFast, ese puerto pasa del estado de bloqueo al de reenvío de inmediato, omitiendo los estados de transición de STP 802.1D usuales (los estados de escucha y aprendizaje). Puede utilizar PortFast en los puertos de acceso para permitir que estos dispositivos se conecten a la red inmediatamente, en lugar de esperar a que STP IEEE 802.1D converja en cada VLAN. Los puertos de acceso son puertos conectados a una única estación de trabajo o a un servidor.En una configuración de PortFast válida, nunca se deben recibir BPDU, ya que esto indicaría que hay otro puente o switch conectado al puerto, lo que podría causar un bucle de árbol de expansión. Los switches Cisco admiten una característica denominada “protección BPDU”. Cuando se habilita, la protección BPDU coloca al puerto en estado deshabilitado por error al recibir una BPDU. Esto desactiva el puerto completamente. La característica de protección BPDU proporciona una respuesta segura a la configuración no válida, ya que se debe volver a activar la interfaz de forma manual.

2.3.1.4 Balanceo de carga de PVST+

En la topología de la figura 1, se muestran tres switches conectados mediante enlaces troncales 802.1Q. Hay dos VLAN, 10 y 20, que se enlazan de forma troncal a través de estos enlaces. El objetivo es configurar el S3 como puente raíz para la VLAN 20 y el S1 como puente raíz para la VLAN 10. El puerto F0/3 en el S2 es el puerto de reenvío para la VLAN 20 y el puerto de bloqueo para la VLAN 10. El puerto F0/2 en el S2 es el puerto de reenvío para la VLAN 10 y el puerto de bloqueo para la VLAN 20.Además de establecer un puente raíz, también es posible establecer uno secundario. Un puente raíz secundario es un switch que se puede convertir en puente raíz para una VLAN si falla el puente raíz principal. Si se tiene en cuenta que los otros puentes de la VLAN retienen su prioridad de STP predeterminada, este switch se convierte en el puente raíz en el caso de producirse una falla en el puente raíz principal.Los pasos para configurar PVST+ en esta topología de ejemplo son los siguientes:Paso 1. Seleccionar los switches que desea como puentes raíz principal y secundario para cada VLAN. Por ejemplo, en la figura 1, el S3 es el puente principal y el S1 es el puente secundario para la VLAN 20.Paso 2. Configure el switch como puente principal para la VLAN mediante el comando spanning-tree vlan number root primary, como se muestra en la figura 2.Paso 3. Configure el switch como puente secundario para la VLAN mediante el comando spanning-tree vlan number root secondary.

2.3.2.1 Modo de árbol de expansión

PVST+ rápido es la implementación de Cisco de RSTP. Este admite RSTP por VLAN. La topología en la figura 1 posee dos VLAN: 10 y 20.Nota: la configuración predeterminada de árbol de expansión en un switch Cisco de la serie Catalyst 2960 es PVST+. Los switches Cisco de la serie Catalyst 2960 admiten PVST+, PVST+ rápido y MST, pero solo puede haber una versión activa para todas las VLAN al mismo tiempo.Los comandos de PVST+ rápido controlan la configuración de las instancias de árbol de expansión de las VLAN. La instancia de árbol de expansión se crea cuando se asigna una interfaz a una VLAN y se elimina cuando la última interfaz se traslada a otra VLAN. Además, puede configurar los parámetros de puertos y switches STP antes de que se cree una instancia de árbol de expansión. Estos parámetros se aplican cuando se crea una instancia de árbol de expansión.

2.4.1.1 Limitaciones del gateway predeterminado

Limitaciones del gateway predeterminadoLos protocolos de árbol de expansión permiten la redundancia física en una red conmutada. Sin embargo, los hosts en la capa de acceso de una red jerárquica también se benefician de los gateways predeterminados alternativos. Si falla un router o una interfaz del router (que funciona como gateway predeterminado), los hosts configurados con ese gateway predeterminado quedan aislados de las redes externas. Se necesita un mecanismo para proporcionar gateways predeterminados alternativos en las redes conmutadas donde hay dos o más routers conectados a las mismas VLAN.Nota: a los efectos del análisis de la redundancia de los routers, no existe ninguna diferencia funcional entre un switch multicapa y un router en la capa de distribución. En la práctica, es común que un switch multicapa funcione como gateway predeterminado para cada VLAN en una red conmutada. Este análisis se centra en la funcionalidad del routing, independientemente del dispositivo físico que se utilice

2.4.1.2 Redundancia del router

Una forma de evitar un único punto de falla en el gateway predeterminado es implementar un router virtual. Como se muestra en la ilustración, para implementar este tipo de redundancia de router, se configuran varios routers para que funcionen juntos y así dar la sensación de que hay un único router a los hosts en la LAN. Al compartir una dirección IP y una dirección MAC, dos o más routers pueden funcionar como un único router virtual.La dirección IP del router virtual se configura como la puerta de enlace predeterminada para las estaciones de trabajo de un segmento específico de IP. Cuando se envían tramas desde los dispositivos host hacia el gateway predeterminado, los hosts utilizan ARP para resolver la dirección MAC asociada a la dirección IP del gateway predeterminado. La resolución de ARP devuelve la dirección MAC del router virtual. El router actualmente activo dentro del grupo de routers virtuales puede procesar físicamente las tramas que se envían a la dirección MAC del router virtual. Los protocolos se utilizan para identificar dos o más routers como los dispositivos responsables de procesar tramas que se envían a la dirección MAC o IP de un único router virtual. Los dispositivos host envían el tráfico a la dirección del router virtual. El router físico que reenvía este tráfico es transparente para los dispositivos host.

2.4.1.3 Pasos para la conmutación por falla del router

Cuando falla el router activo, el protocolo de redundancia hace que el router de reserva asuma el nuevo rol de router activo. Estos son los pasos que se llevan a cabo cuando falla el router activo:1. El router de reserva deja de recibir los mensajes de saludo del router de reenvío.2. El router de reserva asume la función del router de reenvío.3. Debido a que el nuevo router de reenvío asume tanto la dirección IP como la dirección MAC del router virtual, los dispositivos host no perciben ninguna interrupción en el servicio.

2.4.2.1 Protocolos de redundancia de primer salto

En la siguiente lista, se definen las opciones disponibles para los protocolos de redundancia de primer salto (FHRP), como se muestra en la ilustración. Protocolo de routing de reserva activa (HSRP): es un protocolo exclusivo de Cisco diseñado para permitir la conmutación por falla transparente de un dispositivo IPv4 de primer salto. HSRP proporciona una alta disponibilidad de red, ya que proporciona redundancia de routing de primer salto para los hosts IPv4 en las redes configuradas con una dirección IPv4 de gateway predeterminado. HSRP se utiliza en un grupo de routers para seleccionar un dispositivo activo y un dispositivo de reserva. En un grupo de interfaces de dispositivo, el dispositivo activo es aquel que se utiliza para enrutar paquetes, y el dispositivo de reserva es el que toma el control cuando falla el dispositivo activo o cuando se cumplen condiciones previamente establecidas. La función del router de reserva HSRP es controlar el estado operativo del grupo HSRP y asumir rápidamente la responsabilidad de reenvío de paquetes si falla el router activo. HSRP para IPv6: FHRP exclusivo de Cisco que proporciona la misma funcionalidad de HSRP pero en un entorno IPv6. Un grupo IPv6 HSRP tiene una dirección MAC virtual derivada del número del grupo HSRP y una dirección IPv6 link-local virtual derivada de la dirección MAC virtual HSRP. Cuando el grupo HSRP está activo, se envían anuncios de router (RA) periódicos para la dirección IPv6 link-local virtual HSRP. Cuando el grupo deja de estar activo, estos RA finalizan después de que se envía un último RA. Protocolo de redundancia de router virtual versión 2 (VRRPv2): es un protocolo de elección no exclusivo que asigna de forma dinámica la responsabilidad de uno o más routers virtuales a los routers VRRP en una LAN IPv4. Esto permite que varios routers en un enlace de accesos múltiples utilicen la misma dirección IPv4 virtual. Los routers VRRP se configuran para ejecutar el protocolo VRRP en conjunto con uno o más routers conectados a una LAN. En una configuración VRRP, se elige un router como router virtual maestro, mientras que el resto funciona como respaldo en caso de que falle el router virtual maestro.

2.4.3.1 Verificación de HSRP

Un router HSRP activo presenta las siguientes características: Responde a las solicitudes de ARP del gateway predeterminado con la MAC del router virtual. Asume el reenvío activo de paquetes para el router virtual. Envía mensajes de saludo. Conoce la dirección IP del router virtual.Un router HSRP de reserva presenta las siguientes características: Escucha los mensajes de saludo periódicos. Asume el reenvío activo de paquetes si no percibe actividad del router activo.Utilice el comando show standby para verificar el estado de HSRP. En la ilustración, el resultado muestra que el router está en estado activo.

2.4.3.2 Verificación de GLBP

Aunque el HSRP y el VRRP proporcionan recuperabilidad a la puerta de enlace, para miembros de reserva del grupo de redundancia, el ancho de banda corriente arriba no se utiliza mientras el dispositivo se encuentra en modo de reserva.Solo el router activo de los grupos HSRP y VRRP envía tráfico hacia la dirección MAC virtual. Los recursos que no se asocian con el router de reserva no se utilizan al máximo. Es posible lograr un equilibro de carga con estos protocolos mediante la creación de varios grupos y la asignación de varias puertas de enlace predeterminadas, pero esta configuración genera una carga administrativa.GLBP es una solución propia de Cisco que permite la selección automática y la utilización simultánea de varias puertas de enlace disponibles, además de la conmutación por falla automática entre esas puertas de enlace. Como se muestra en la figura 1, varios routers comparten la carga de las tramas que, desde la perspectiva del cliente, se envían a una única dirección de gateway predeterminado.Con GLBP, podrán utilizar al máximo los recursos sin la carga administrativa de configurar varios grupos y administrar varias configuraciones de puerta de enlace predeterminadas. GLBP tiene las siguientes características: