Want to create interactive content? It’s easy in Genially!
Máximos y Mínimos
paulasophia
Created on November 22, 2016
Start designing with a free template
Discover more than 1500 professional designs like these:
View
Higher Education Presentation
View
Psychedelic Presentation
View
Vaporwave presentation
View
Geniaflix Presentation
View
Vintage Mosaic Presentation
View
Modern Zen Presentation
View
Newspaper Presentation
Transcript
MÁXIMOS Y MÍNIMOS
LOGO AQUÍ
Sophia Montoya Piedra
Sophia_Montoya@outlook.es
Cálculo Diferencial
Máximos y Mínimos
Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial es posible encontrar respuesta a estos problemas, que de otro modo parecería imposible su solución.
03
Función (Y)
02
03
01
Si una función continua es ascendente en un intervalo y a partir de un punto cualquiera empieza a decrecer, a ese punto se le conoce como punto critico máximo relativo, aunque comúnmente se le llama solo máximo.
si una funcion continua es decreciente en cierto intervalo hasta un punto en el cual empieza a ascender, a este punto lo llamamos puntro critico minimo relativo, o simplemente minimo.
Entre los valores q puede tener una función (Y) puede haber uno que sea el mas grande y otro que sea el mas pequeño. A estos valores se les llama respectivamente punto máximo y punto mínimo absolutos.
Punto crítico
05
En un punto critico minimo relativo, la funcion deja de decrecer y empieza a ser creciente, por tanto, su derivada pasa de negativa a positiva.
En un punto critico maximo relativo, al pasar la funcion de creciente a decreciente, su derivada pasa de positiva a negativa.
MéTODOS PARA CALCULAR MáXIMOS Y MíNIMOS DE UNA FUNCIóN
Para conocer las coordenadas de los puntos críticos máximos y mínimos relativos en una función, analizaremos dos mecanismos:
CRITERIO DE LA PRIMERA DERIVADA, UTILIZADO PARA UNA FUNCION CONTINUA Y SU PRIMERA DERIVADA TAMBIEN CONTINUA. • obtener la primera derivada . • igualar la primera derivada a cero y resolver la ecuación.
Se asignan valores próximos (menores y mayores respectivamente) a la variable independiente y se sustituyen en la derivada. Se observan los resultados; cuando estos pasan de positivos a negativos, se trata de un punto máximo; si pasa de negativo a positivo el punto crítico es mínimo.
sustituir en la función original (Y) el o los valores de la variable independiente (X) para los cuales hubo cambio de signo. Cada una de las parejas de datos así obtenidas, corresponde a las coordenadas de un punto crítico
07
Primer Método
CRITERIO DE LA SEGUNDA DERIVADA
Este método es más utilizado que el anterior, aunque no siempre es más sencillo. Se basa en que en un máximo relativo, la concavidad de una curva es hacia abajo y en consecuencia, su derivada será negativa; mientras que en un punto mínimo relativo, la concavidad es hacia arriba y la segunda derivada es positiva.
Este procedimiento consiste en: • calcular la primera y segunda derivadas • igualar la primera derivada a cero y resolver la ecuación. • sustituir las raíces (el valor o valores de X) de la primera derivada en la segunda derivada.
Si el resultado es positivo, hay mínimo. Si la segunda derivada resulta negativa, hay un máximo. Si el resultado fuera cero, no se puede afirmar si hay o no un máximo o mínimo.
En muchos problemas prácticos resulta muy sencillo identificar cuales valores críticos dan máximos o mínimos; y en consecuencia, ya no será necesario aplicar el procedimiento completo. Es conveniente construir la grafica que represente la función en cuestión, a fin de verificar los resultados obtenidos.